PS2 / Cvičenie 04 / EIGRP

Topológia

Scenár a príprava

Topológiu s 3 smerovačmi rieši **trojica** študentov, pričom jeden študent konfiguruje jeden smerovač (alternatívne dvojica bude mať 3 smerovače, ak to inak nevydá). Ak topológiu rieši dvojica, v tomto prípade môže učiteľ zvážiť prideliť 1 bonusový bod obom členom danej skupiny, ak dvojica stihne vyriešiť všetky kroky zadania pre časť A. - EIGRP pre IPv4 do konca cvičenia.

Pokiaľ sa dá, spravte topológiu, ktorú vidieť **vľavo**. Využijete **HWIC-4ESW** karty, a konfiguráciu cez int vlan 1 (resp. int vlan 2), týchto kariet máme v RB303 39 kusov, takže s prehľadom môže každá skupina zapojiť topológiu na obrázku hore vľavo.

Pokiaľ musíte použiť sériové rozhrania (napríklad ak ste v inom labe ako RB303, a nemáte tam dostatočný počet smerovačov s potrebným počtom ethernet kariet), zapojte sériové rozhrania medzi všetky smerovače R1-R2-R3 (viď topo vpravo), a rozhrania k PC_A, B, C aj k prepínaču MAIN potom budete mať štandardné fastethernet porty, a budete môcť ísť tiež podľa tohto zadania. Vychádzame z toho, že všetky 3 linky medzi smerovačmi sú rovnaké (buď všetky fastethernet alebo všetky serial).

Kto počas cvičenia stihne aj časť A (EIGRP pre IPv4), aj časť B (EIGRP pre IPv6), učiteľ môže zvážiť prideliť všetkým členom skupiny 1 bonusový bod.

Časť A - EIGRP pre IPv4

IP adresy

V zátvorke v Interface máte uvedené označenia rozhraní pre topológiu vpravo, so sériovými rozhraniami.

Device	Interface	IP Address	Subnet Mask	Default Gateway
R1	int vlan 1 (f0/0)	192.168.1.1	255.255.255.0	N/A
	f0/0 (S0/0/0)	192.168.12.1	255.255.255.252	N/A
	f0/1 (S0/0/1)	192.168.13.1	255.255.255.252	N/A
	Lo1	192.168.11.1	255.255.255.252	N/A
	Lo5	192.168.11.5	255.255.255.252	N/A

	Lo9	192.168.11.9	255.255.255.252	N/A
	Lo13	192.168.11.13	255.255.255.252	N/A
	int vlan 2 (f0/0)	192.168.2.1	255.255.255.0	N/A
D2	f0/1 (S0/0/1)	192.168.12.2	255.255.255.252	N/A
ΓZ	f0/0 (S0/0/0)	192.168.23.1	255.255.255.252	N/A
	int vlan 1 (f0/1)	ip add dhcp	255.255.255.252	N/A
	int vlan 1 (f0/0)	192.168.3.1	255.255.255.0	N/A
	f0/0 (S0/0/0)	192.168.13.2	255.255.255.252	N/A
	f0/1 (S0/0/1)	192.168.23.2	255.255.255.252	N/A
R3	Lo1	192.168.11.17	255.255.255.252	N/A
	Lo5	192.168.11.21	255.255.255.252	N/A
	Lo9	192.168.11.25	255.255.255.252	N/A
	L013	192.168.11.29	255.255.255.252	N/A
PC-A	NIC	192.168.1.3	255.255.255.0	192.168.1.1
PC-B	NIC	192.168.2.3	255.255.255.0	192.168.2.1
PC-C	NIC	192.168.3.3	255.255.255.0	192.168.3.1

Postup

0. Namiesto putty použite MobaXterm

a. Ak ste ho doteraz ešte neobjavili na PC v labe, nájdite a použite ho dnes počas tohto labu. Pravdepodobne pri ňom budete chcieť ostať aj ďalšie cvičenia.

Terminal	Sessions	View X	server T	ools Games Se	ettings Ma	ros Help							
<u></u>	*	1	*	🔶 🖳		Ý	* *	4	¢ [¢]	?		X	U
Session	Servers	Tools	Games	Sessions Viev	Split	MultiExec	: Tunneling	Packages	Settings	Help	X	server	Exit
Quick	< connec	:t			2. COM1 (C	ommunicati	ons Port (C	×	2				Ø
≪ 🙎	User session	is sessions		ICMP redi B303-Hlav	rect cac ny-Sw#sh	he is ei span	mpty						^
Macros 🍝 Tools 🗡 Sessions	СОМ1	(Communio	cations Port	(C VLAN0001 Spannir Root II Bridge	ng tree e Prio Addr Cost Hell ID Prio Addr Hell Agin	nabled p rity ess o Time rity ess o Time g Time	protocol 24715 001b.84 20023 5 (Fast 2 sec 32769 0016.90 2 sec 300 sec	. rstp 8f.de00 Etherne Max Ag (priori 13f.d580 Max Ag	t1/0/3) e 20 sec ty 32768 e 20 sec	Forward Delay sys-id-ext 1) Forward Delay	15 sec 15 sec		
1				Interface) 	Role	Sts Cos	t	Prio.Nbr	Туре			
<				Fa1/0/3 Fa1/0/7 Fa1/0/9 Fa1/0/11 Fa1/0/17 Fa1/0/19		Root Desg Desg Desg Desg Desg	FWD 19 FWD 19 FWD 19 FWD 19 FWD 19 FWD 19 FWD 19		128.5 128.9 128.11 128.13 128.19 128.21	P2p P2p Peer(STP) P2p Peer(STP) P2p Peer(STP) P2p Peer(STP) P2p Peer(STP)			

- UNREGISTERED VERSION Please support MobaXterm by subscribing to the professional edition here: https://mobaxterm.mobatek.net
- 1. Základná konfigurácia (hostname, rozhrania, IP adresy, otestuj konektivitu medzi každými dvomi priamymi susedmi, R#1-R#2, R#2-R#3, R#1-R#3, každý PC- svoju defGW)
 - a. <u>Upozornenie</u>: na R#2 budeme využívať dva porty z HWIC-4ESW karty. Aby fungovalo aj int vlan 2, je potrebné daný fyzický port nastaviť pre vlan 2. Číslovanie portov je zľava doprava: f0/1/3, f0/1/2, f0/1/1, f0/1/0, a pokiaľ f0/1/3 vedie k ISP a f0/1/2 vedie k PC_B, tak treba: int f0/1/2, switchport access vlan 2, defaultne by totiž ostal vo vlan 1.
- 2. Nakonfigurujte základné EIGRP, AS=10
 - a. nastavte router ID pre každý smerovač (X.X.X.X, kde X je číslo tvojho smerovača)
 - b. použite wildcard masku, presne špecifikujte siete (network ...)

- i. presne špecifikovať siete v network príkaze znamená, že na R1 a R3 zadáte 7 network príkazov, a na R2 zadáte 4 network príkazy (je to z dôvodu, aby sme si neskôr v zadaní ukázali aj manuálnu sumarizáciu)
- ii. pokiaľ máš dostatok výpisov z debugu na analyzovanie, môžeš ho vypnúť
- c. overte, či si smerovače vytvorili susednosti so susednými EIGRP smerovačmi show ip eigrp neighbors
- d. preskúmajte obsah smerovacej tabuľky (show ip route eigrp)
 - aký typ load-balancingu robí daný smerovač, a do akej siete? prečo? Pri dokazovaní si môžeš pomôcť aj show ip eigrp topology
- e. preskúmajte topology table v EIGRP na každom smerovači
 - i. vidieť tam nejakých feasable succesors? prečo? (show ip eigrp topology)
 - ii. Prečo cesta do LAN siete na susedovom smerovači nemá aj nejakého feasable succesora? Kontrola 1 vyučujúcim, ukážte dôkaz.
 - (show ip eigrp topology all links)
- f. zdokumentuj a zapíš hodnoty: feasable distance, reported distance a stav (ACTIVE / PASSIVE) pre jednu zvolenú cieľovú sieť [show ip eigrp topology tu_bude_IP_siete]
- g. preskúmajte parametre EIGRP protokolu (show ip protocols):
 - i. aké parametre používa EIGRP na výpočet metriky?
 - ii. aká AD sa použije pre externé EIGRP?
 - iii. medzi koľkými cestami s rovnakou metrikou (equal cost pats) defaultne vie robiť EIGRP loadbalancing ?
 - iv. aký má maximálny hop count? (metric maximum-hops ?)
- h. logovanie zmien vzťahov susednosti na monitorovanie stability smerovacieho procesu a na pomoc detegovania problémov je defaultne zapnuté, ak ho potrebujem zapnúť/vypnúť, robí sa príkazom: router(config-router)#eigrp log-neighbor-changes
 - i. spravte experiment, že vypnete jedno rozhranie a znova ho zapnete, sledujte výstupy
- i. zisti koľko bolo prijatých /odoslaných EIGRP paketov (show ip eigrp traffic)
- j. debugovaním prever funkcionalitu EIGRP packetov
 - i. najprv zapni sledovanie správ pri aktivácií DUAL algoritmu: debug eigrp fsm
 - vypni niektoré rozhranie, sleduj výpisy
 - následne zapni rozhranie, sleduj výpisy
 - vypni debugovanie
 - ii. teraz zapni sledovanie EIGRP paketov: debug eigrp packet
 - cez aký protokol si potvrdzujú prijatie EIGRP hello paketov?
 - posiela sa to ako unicast alebo multicast?

3. Zmeňte delay na R1

- a. overte najprv aký máte aktuálne nastavený (default) delay aj bandwidth na rozhraní (show int s0/0/0)
- b. overte, koľko ciest existuje do siete "WAN linka medzi susednými dvomi smerovačmi R2-R3"
- c. zmeňte delay na niektorej linke/linkách tak, aby cesta do siete "WAN linka medzi susednými dvomi smerovačmi R2-R3" mala iba jedného succesora (aktuálne máte dvoch) a druhý smerovač bol feasable succesorom
 - i. <u>Upozornenie</u>: tu stačí iba mierne zhoršiť delay pre jednu linku k jednému susedovi spraví iba jeden študent z trojice.
- d. overte v smerovacej tabuľke či ste to dosiahli, overte aj topo tabuľku, či vidíte succesora, aj feasable succesora do danej siete Kontrola 2 vyučujúcim, ukáž výsledok!
- 4. Vypočítajte metriku do jednej vybranej cieľovej siete
 - Sprav to z pohľadu R1 do siete "WAN linka medzi susednými dvomi smerovačmi R2-R3".
 - a. Zistite aká je metrika (metrika zo smerovacej tabuľky, resp. FD=feasable distance z topo tabuľky)

- b. Spravte skúšku správnosti, a prepočítajte na papier, ako vznikla táto hodnota
 - i. Zistite si BW a delay pre všetky linky, ktoré vedú do cieľovej siete (show int...)ii. Použite vzorec:
 - $(10^7/BW_najpomalšej_linky_v_kilobitoch_za_sek + \sum (delays_v_mikrosekundach/10)) * 256$
 - Poznámka 1: delay na rozhraní v Cisco IOSe ukazuje v desiatkach mikrosekúnd, preto máme vo vzorci /10
 - Poznámka 2: *256 je tam kvôli kompatibilite so starším smerovací protokolom IGRP
 - iii. Kontrola 3 vyučujúcim, ukáž výpočet!
- 5. Nastavte unequal-cost load-balancing pomocou parametra variance na R1
 - Pokračujte so zmeneným delay z bodu 4, a donúťte smerovač R1 používať obidve cesty do siete "WAN linka medzi susednými dvomi smerovačmi R2-R3", aj keď jedna má horšiu metriku, t.j. aby aj R2 aj R3 boli ako succesors do danej siete.
 - b. Použi na to parameter variance, zmeň ho na najmenšíu možnú hodnotu tak, aby ste dosiahli danú zmenu.
 - c. Over výsledok, show ip route, show ip eigrp topo, show ip eigrp topo all-links
 Kontrola 4 vyučujúcim, ukáž výsledok!
- 6. Nastavte rozhrania na R1 vedúce do LAN ako pasívne
 - a. siete budú oznamované V EIGRP, ale nebudú do nich posielané HELLO pakety
 - **b.** overte cez show ip protocols
- 7. Automatická sumarizácia na R1 a R3
 - a. najprv overte cez show ip protocols či je automatická sumarizácia zapnutá/vypnutá
 - b. overte aj výpisy v smerovacej tabuľke, či vidíte všetky cieľové siete, a ako ich vidíte
 - c. teraz zapnite automatickú sumarizáciu (router eigrp 10, auto-summary)
 - d. ako sa zmenila smerovacia tabuľka? o koľko záznamov je tam teraz menej? (skontroluj všetkých smerovacích tabuliek, na R1, R2, R3)
 - e. máte konektivitu z PC-A na Lo1 z R3? Prečo nie? Kontrola 5 vyučujúcim, zdôvodni!
- 8. Manuálna sumarizácia na R1 a R3
 - Odstráňte problém z predošlého bodu vypnite automatickú sumarizáciu, a zredukujte počet záznamov v smerovacej tabuľke manuálnou sumarizáciou na každom smerovači na oboch fastethernet rozhraniach f0/0, f0/1 (píše sa priamo na rozhraní:
 - ip summary-address eigrp 10 SUMARIZOVANA_SIET MASKA_SUMARIZOVANEJ_SIETE)
 i. Sumarizujte siete vašich loopback rozhraní najtesnejšie ako sa dá.
 - b. overte požadovanú zmenu v smerovacej tabuľke.
 - i. V čom sa teraz líši ten sumarizovaný záznam, oproti situácií, keď ste používali automatickú sumarizáciu? Kontrola 6 vyučujúcim, ukáž výsledok!
 - c. máte konektivitu z PC-A na Lo1 z R3? Prečo teraz áno?
- **9.** Skontrolujte na **R2 default route, a propagujte** ju v EIGRP. Nakonfigurujte aj **PAT** pre pripojenie do Internetu.
 - a. na R2 nastavte, aby rozhranie vedúce k ISP získalo IPv4 adresu cez DHCP (ip address dhcp)
 - b. na R2 nie je potrebné zadávať default route cez ISP, ktorého IP adresu máte v obrázku s topológiou, získate ju automaticky po predošlom príkaze z bodu a., overte (show ip route)
 - c. Na R2 redistribuujte default route ju v EIGRP (redistribute static)
 - d. overte cez show ip protocols, či sa redistribuuje
 - e. nájdite nový záznam o default route v smerovacej tabuľke susedných smerovačov, všimnite si hodnotu AD.

- f. Nakonfigurujte PAT overload na hornom smerovači R2, aby prekladal všetky vaše IP adresy v topológii na IPv4 adresu svojho rozhrania vedúceho k ISP.
 - i. Nastavte, aby rozhranie k ISP si získalo IPv4 adresu cez DHCP (ip address dhcp)
- g. Overte konektivitu z ľubovoľného PC do internetu. Kontrola 7 vyučujúcim, ukáž funkčnosť!
- 10. Zmeňte mieru využitia BW linky pre EIGRP
 - a. <u>Poznámka:</u> Príkaz show ip eigrp interfaces detail vie ukázať koľko % BW má vyhradené EIGRP pre svoje hello pakety - vo výpise bude: Interface BW pecentage is... Avšak tento príkaz vám neukáže toto percento pre default stav, vy ale viete že je to defaultne 50%. Použijete ho neskôr, keď zmeníte percento konfiguračne.
 - b. zmeňte percento využitia na 75%, a pozrite výpis int f0/x, ip bandwidth-percent eigrp 10 75 show ip eigrp interfaces detail (Interface BW pecentage is...)
 - c. vráťte hodnotu do default stavu
- 11. Zmeňte predvolené hodnoty pre hello a hold time
 - a. najprv overte aké sú predvolené hodnoty (show ip eigrp interfaces detail)
 - b. zmeňte hodnotu hello time na 60 a hold time na 180 (na každom smerovači)
 - c. int f0/x, ip hello-interval eigrp 10 60, ip hold-time eigrp 10 180
 - d. prečo je nutné mať interval pre hold-time väčší alebo rovný intervalu pre hello? (ak neviete odpovedať, spravte si test, že nastavíte hold-time menši ako hello, a sledujte čo sa udeje...)
- 12. Autentifikácia pre EIGRP (medzi každými dvomi smerovačmi, R1-R2, R2-R3, R1-R3) Pozn.: Administrátor by v rámci jedného AS zvolil vo väčšine prípadov rovnaký názov kľučenky na všetkých smerovačoch, a aj rovnaké čísla kľúčov aj rovnaké heslá. V tomto cvičení si ale ukážeme, že názov kľúčenky je lokálna vec na smerovači, nemusí byť zhodný s ostatnými susednými smerovačmi. Číslo kľúča a heslo musí sedieť medzi 2 susedmi vždy.
 - a. najprv vytvorte kľúčenku, názov kľúčenky je lokálna vec daného smerovača:

```
na R1: key chain EIGRP-KLUCENKA-R1
na R2: key chain EIGRP-KLUCENKA-R2
na R3: key chain EIGRP-KLUCENKA-R3
```

- b. Na každom smerovači pridajte do kľúčenky rovnaký kľúč a heslo kľuč 1, heslo cisco t.j. do každej kľučenky pridajte:
 - key 1, key-string cisco
- potom nastavte (aplikujte) autentifikáciu na každom rozhraní pomocou vytvorených kľučeniek, a výberom správneho algoritmu (interface f0/x)

```
ip authentication key-chain eigrp 10 \it EIGRP-KLUCENKA-RX ip authentication mode eigrp 10 md5
```

- d. overte zmenu cez show ip eigrp interfaces detail (Authentication mode is..) - Kontrola 8 vyučujúcim, ukáž výpis.
- e. načo je dobrá autentifikácia pre EIGRP?

13. Preskúmajte štruktúru EIGRP IPv4 paketov

- a. nastavte rozhranie k vášmu počítaču ako nie pasívne (aktívne), odchyťte EIGRP pakety vo Wiresharku a analyzujte ich
 - i. iba hello preskúmajte hlavičku a telo
 - na akú multicastovú adresu sa posiela?
 - Čo niese? Vidieť K hodnoty používané pri výpočte metriky?
 - ii. request, update, response, acknowledgement neuvidíme, lebo na danom rozhraní nemáme žiadneho EIGRP suseda

Časť B - EIGRP pre IPv6

Scenár a príprava

Topológia: ostáva. Ak chcete ísť v IPv6 aj do Internetu, tak:

- pripojte prepínač MAIN na ISP smerovač a uplink (červený kábel) treba presunúť z prepínača MAIN na smerovač ISP f0/1, a dokonfigurovať na ISP vnútornú IPv6 adresu 2001:470:22B3:A::254/64 na g0/0/0, a doplniť statické IPv6 cesty k jednotlivým skupinám (pre urýchlenie možno použiť konfiguračný súbor z predošlého cvičenia a nahrať na ISP – je aj na konci tohto zadania)
- na R#2 treba manuálne vytvoriť default route smerom k ISP (neskôr ju budete redistribuovať v EIGRP), ako adresu next hop smerovača použite IPv6 adresu uvedenú v predošlej odrážke

Device	Interface	IP Address	Default Gateway
	int vlan 1 (f0/0)	2001:470:22B3:#AA::1/64	N/A
		FE80::1 link-local	
	f0/0 (S0/0/0)	2001:470:22B3:#12::1/64	N/A
		FE80::1 link-local	
	f0/1 (S0/0/1)	2001:470:22B3:#13::1/64	N/A
		FE80::1 link-local	
D1	Lo1	2001:470:22B3:#94::1/64	N/A
RI		FE80::1 link-local	
	Lo5	2001:470:22B3:#95::5/64	N/A
		FE80::1 link-local	
	Lo9	2001:470:22B3:#96::9/64	N/A
		FE80::1 link-local	
	Lo13	N/A	
		FE80::1 link-local	
	int vlan 1 (f0/1)	2001:470:22B3:A::#/64	N/A
		FE80::# link-local	
	int vlan 2 (f0/0)	2001:470:22B3:#BB::1/64	N/A
53		FE80::2 link-local	
KZ	f0/1 (S0/0/1)	2001:470:22B3:#12::2/64	N/A
		FE80::2 link-local	
	f0/0 (S0/0/0)	2001:470:22B3:#23::1/64	N/A
		FE80::2 link-local	
R3	int vlan 1 (f0/0)	2001:470:22B3:#CC::1/64	N/A
		FE80::3 link-local	
	f0/0 (S0/0/0)	2001:470:22B3:#13::2/64	N/A
		FE80::3 link-local	
	f0/1 (S0/0/1)	2001:470:22B3:#23::2	N/A
		FE80::3 link-local	
	Lo1	2001:470:22B3:#90::1/64	N/A
		FE80::3 link-local	
	Lo5	2001:470:22B3:#91::5/64	N/A
	Lo9	2001:470:22B3:#92::9/64	N/A
	1013	2001.470.2283.#9313/64	N/A

IPv6 adresy

PC-A	NIC	2001:470:22B3:#AA::2/64	2001:470:22B3:#AA::1
PC-B	NIC	2001:470:22B3:#BB::2/64	2001:470:22B3:#BB::1
PC-C	NIC	2001:470:22B3:#CC::2/64	2001:470:22B3:#CC::1

Postup

Topológiu, aj konfiguráciu nemeňte, iba nasaďte teraz aj EIGRP pre IPv6

- 1. Povoľte IPv6 smerovanie (ipv6 unicast-routing)
- 2. Nastavte router ID pre každý smerovač (ipv6 router eigrp 1, eigrp router-id X.X.X.X)
- 3. Spustite EIGRP pre IPv6 proces smerovania na každom smerovači
 - o ipv6 router eigrp 1, no shutdown
 - o interface s0/0/0, ipv6 eigrp 1
- 4. Pridajte na R2 default route smerom na ISP smerovač, a redistribuujte ju v EIGRP
- 5. Overte konektivitu cez IPv6
- 6. Preskúmajte nastavenia a výpisy
 - Overte cez show ipv6 eigrp neighbors, aké adresy sa použili?
 - Overte cez show ipv6 route eigrp, či máte v RT všetky siete, a aké adresy sa použili pre next-hops?
 - Preskúmajte topologickú tabuľku a porovnajte záznamy s RT, show ipv6 eigrp topology
- 7. Preskúmajte štruktúru EIGRP IPv6 paketov
 - nastavte rozhranie k vášmu počítaču ako nie pasívne (aktívne), odchyťte EIGRP pakety vo Wiresharku a analyzujte ich
 - 1. iba hello preskúmajte hlavičku a telo
 - 1. na akú multicastovú adresu sa posiela?
 - 2. Čo niese? Vidieť K hodnoty používané pri výpočte metriky?
 - 2. request, update, response, acknowledgement neuvidíme, lebo na danom rozhraní nemáme žiadneho EIGRP suseda
- 8. Nastavte rozhrania vedúce k LAN sieťam na smerovači R1 ako pasívne
 - ipv6 router eigrp 1, passive-interface g0/0 (funguje aj passive-interface default, to ale teraz nechceme)
 - o overte nastavenia, show ip protocols
- 9. Nastavte manuálnu sumarizáciu looppback rozhraní na R1 aj R3
 - Čo, ako a kde sumarizujete?
- **10.** Kontrola vyučujúcim 9 ukáž sumarizované Lo rozhrania v smerovacej tabuľke, a ping medzi PCs (príp. aj do internetu).

Konfigurácia ISP smerovača (pre učiteľa, alebo šikovného študenta):

Ak neostala na smerovači pôvodná/základná konfigurácia (IPv6 tunel a pod.), treba ju nakopírovať z flash: basic-config-b303.text príkazom v privilegovanom móde (v opačnom prípade tento krok preskočiť):

config replace flash: basic-config-b303.text

A k tejto základnej konfigurácii pridať toto (ctrl+c, ctrl+v najprv do notepadu, aby sa vymazalo formátovanie a následne odtiaľ ctrl+c, ctrl+v v globálnom config móde na smerovači):

```
hostname ISP
ipv6 unicast-routing
interface GigabitEthernet0/0/0
no shut
no ipv6address2001:470:22B3::1/64
ipv6address2001:470:22B3:A::254/64
I.
interface GigabitEthernet0/0/1
no shut
T
ipv6route2001:470:22B3:100::/56 2001:470:22B3:A::1
ipv6route2001:470:22B3:200::/56 2001:470:22B3:A::2
ipv6route2001:470:22B3:300::/56 2001:470:22B3:A::3
ipv6route2001:470:22B3:400::/56 2001:470:22B3:A::4
ipv6route2001:470:22B3:500::/56 2001:470:22B3:A::5
ipv6route2001:470:22B3:600::/56 2001:470:22B3:A::6
ipv6route2001:470:22B3:700::/56 2001:470:22B3:A::7
ipv6route2001:470:22B3:800::/56 2001:470:22B3:A::8
ipv6route2001:470:22B3:900::/56 2001:470:22B3:A::9
ipv6route2001:470:22B3:1000::/56 2001:470:22B3:A::10
```