
Vytvorené v rámci projektu KEGA 026TUKE-4/2021

• DevNet Associate M7 – Infrastructure and Automation

Lecture 10 – Infrastructure and Automation

Outline

Topic Title Topic Objective

Automating Infrastructure with
Cisco

Describe deployment environments that benefit from automation.

DevOps and SRE Explain the principles of DevOps.

Basic Automation Scripting Describe the use of scripting in automation.

Automation Tools Explain automation tools that speed the development and deployment of code.

Infrastructure as Code Explain the benefits of storing infrastructure as code.

Automating Testing Explain how automation tools are used in the testing of application deployments.

Network Simulation Describe the use of the Cisco VIRL network simulation test environment.

Automating Infrastructure

KIS FRI UNIZA4

• Automation is using code to configure, deploy, and manage applications
together with the compute, storage, and network infrastructures and
services on which they run.

• For automation with Cisco infrastructure, the platforms can integrate with the
common tools such as Ansible, Puppet, Chef and so on, or provide direct
API access to the programmable infrastructure.

Introduction to Automating Infrastructure
Infrastructure and Automation

KIS FRI UNIZA5

There are several use cases for automation for the network. Depending on the
operational model to be followed, there are choices to programmatically
control the network configurations and infrastructure.

Automation Solutions
Infrastructure and Automation

Walk: Read only automation
Run: Activate policies and provide self-

service across multiple domains
Fly: Deploy applications, network

configurations, and more through CI/CD

• Using automation tools,
information can be gathered
about the network
configuration.

• One can use a read scenario
to audit configurations and do
the next natural step, which is
to put the configuration back
into compliance.

• In the Automation Exchange,
this shift is categorized as a
walk-run-fly progression.

• With these Run stage
automation scenarios, the
users can safely provision their
own network updates.

• On-boarding workflows can be
automated, day-to-day network
configurations can be
managed, and daily scenarios
can be pervaded.

• For more complex automation
and programmable examples,
the Fly stage of the DevNet
Automation Exchange is used.

• Here the needs can be
managed by monitoring and
proactively managing the users
and devices, while also gaining
insights with telemetry data.

KIS FRI UNIZA6

• Speed and agility enable the business to explore, experiment with, and
exploit opportunities ahead of their competition.

• Developers need to accelerate every phase of software building: coding and
iterating, testing, and staging. DevOps practices require developers to
deploy and manage apps in production, so developers should also automate
those activities.

Why Do We Need Automation?
Infrastructure and Automation

Disadvantages of Manual Operations

• Add to costs, are time taking and are hard to scale.
• Are prone to human error, and documentation meant for humans is often incomplete and

ambiguous, hard to test, and quickly outdated.

KIS FRI UNIZA7

Dependency risks
• Today's software ecosystem is decentralized. Developers build individual components according to

their needs and interests and mix and match components, infrastructure, and services needed to
enable complete solutions and operate them efficiently at scale.

• This ecosystem introduces new requirements and new risks:
• Components need to be able to work alongside many other components in many different

situations showing no more preference for specific companion components or architectures
than absolutely necessary.

• Component developers may abandon support for obsolete features and rarely-encountered
integrations. This disrupts processes that depend on those features.

• Dependency-ridden application setups tend to get locked into fragile and increasingly insecure
deployment stacks.

Why Do We Need Automation?
Infrastructure and Automation

KIS FRI UNIZA8

Automation is a key component of functional software-defined infrastructure and distributed
and dynamic applications. The benefits of full–stack automation are:
• Self-service: Automation provides self-service frameworks which enable users to

requisition infrastructure on demand.
• Scale on demand: Apps and platforms need to be able to scale up and down in response

to traffic and workload requirements and to use heterogeneous capacity.
• Observability: An observable system enables users to infer the internal state of a complex

system from its outputs.
• Automated problem mitigation: The apps and platforms should be engineered to

minimize the effects of issues, self-heal and monitor events.

Why Do We Need Full - Stack Automation?
Infrastructure and Automation

KIS FRI UNIZA9

Software-defined infrastructure is also known as cloud computing. It lets the developers and
operators to use the software to requisition, configure, deploy and manage bare-metal and
virtualized compute, storage and network resources.

Software-Defined Infrastructure: A Case for Automation
Infrastructure and Automation

Benefits of cloud paradigms • Self-service (platforms on demand)
• Close specification, consistency, repeatability
• Platform abstraction

Challenges faced in cloud paradigms • Developers must pay close attention to platform design,
architecture, and security.

• Access control is critical as cloud users with the wrong
permissions can do a lot of damage to their organization's
assets.

• When cloud resources can be self-served quickly via
manual operations, consumption can be hard to manage,
and costs are difficult to calculate.

KIS FRI UNIZA10

• Modern application
architectures are increasingly
distributed.

• They are built up of small and
relatively light components that
are sometimes called
microservices.

• These components may be
isolated in containers,
connected via discovery and
messaging services (which
abstract network connectivity)
and backed by resilient,
scalable databases (which
maintain state).

Distributed and Dynamic Applications: Another Case
for Automation

Infrastructure and Automation

KIS FRI UNIZA11

Benefits of microservices:
• Scalability - Microservices can be

scaled and load-balanced as needed
across many networked servers or
multiple geographically-separate public
cloud regions. This eliminates single
points of failure.

• Infrastructure Automation tools -
Increasingly, the dynamism of
microservice-based applications is
provided by infrastructure. These
container automate on-demand scaling,
self-healing, and more.

Distributed and Dynamic Applications: Another Case
for Automation

Infrastructure and Automation

Challenges of microservices:
• Increased complexity - Microservices

mean that there are many moving parts
to configure and deploy. There are more
demanding operations, including scaling-
on-demand, self-healing and other
features.

• Automation is a requirement - Manual
methods can not realistically cope with
the complexity of deploying and
managing dynamic applications.

KIS FRI UNIZA12

These business and technical needs, trends, and dynamics, encourage developers and operators to use
automation everywhere for the following tasks:
• Manage all phases of app building, configuration, deployment and lifecycle management. This

includes coding, testing, staging, and production.
• Manage software-defined infrastructures on behalf of the applications you build.
• Alongside the applications, to preserve, update, and continually improve the automation code. This

code helps to develop, test, stage, monitor, and operate the apps at production scales, and in various
environments. Increasingly, all this code can be treated as one work-product.

Automating Infrastructure Summary
Infrastructure and Automation

DevOps and SRE

13

KIS FRI UNIZA14

• For full-stack automation to be truly effective, it requires changes to organizational culture, including
breaking down the historical divides between Development (Dev) and Operations (Ops).

• Historically, creating applications was the job of software developers (Dev), and ensuring that apps
work for users and the business has been the specialized province of IT operations (Ops).

Introduction to DevOps and SRE
DevOps and SRE

KIS FRI UNIZA15

The following table describes the different characteristics of Dev and Ops:

DevOps Divide
DevOps and SRE

Characteristics Dev Ops

Cares about Bespoke applications and how they work
Applications and how they run, plus
Infrastructure, OS, network, and so on

Business treats
as

Profit center: demands resources
Cost center: provides and accounts for
resources

Participates in
on-call rotation

Occasionally (only when issues are
escalated to dev)

Regularly (point of spear)

Performance
measured

Abstractly (including bad metrics) Concretely (SLA compliance, issues resolved)

Skills required
More deep than broad: Languages, APIs,
architecture, tools, process and so on

More broad than deep: Configuration,
administration, OS, automation, and so on

Agility required
Move fast, innovate, break things, fix
later

Investments must be extensively justified,
expectations managed

KIS FRI UNIZA16

In the traditional, pre-virtualization, enterprise IT ecosystem, separating Dev from Ops seemed sensible.

In the early 2000s, there began a movement to treat Dev and Ops as a single entity:
• Make coders responsible for deployment and maintenance.
• Treat virtualized infrastructure as code.

DevOps Divide
DevOps and SRE

KIS FRI UNIZA17

DevOps evolved and continues to evolve in many places in parallel. Some key events have shaped the
discipline as we know it today.
• Defining Moments 1: Site Reliability Engineering (SRE): Institutionalization of SRE by Google in

2003.
• Defining Moments 2: Debois and Agile Infrastructure: Patrick Debois’ presentation in 2009 on

automating virtual and physical infrastructure using version control and applying Agile methods.
• Defining Moments 3: Allspaw and Hammond: Presentation by John Allspaw and Paul Hammond in

2009 outlining a simple set of DevOps best practices founded on the idea that both Dev and Ops
cooperatively enable the business.

Evolution of DevOps
DevOps and SRE

KIS FRI UNIZA18

DevOps/SRE have many core principles and best practices:
• A focus on automation
• The idea that "failure is normal"
• A reframing of "availability" in terms of what a business can tolerate

Core Principles of DevOps
DevOps and SRE

KIS FRI UNIZA19

SLOs, SLIs, and error budgets
• The two linked ideas to DevOps/SRE culture are DevOps must deliver measurable, agreed-upon

business value and the statistical reality of doing so perfectly is impossible.
• These ideas are codified in a Service Level Objective (SLO) that is defined in terms of real metrics

called Service Level Indicators (SLIs).
• SLIs map to the practical reality of delivering a service to customers.
• SLO/SLI methodology permits cheaper, more rapid delivery of business value by removing the

obligation to seek perfection. It can also influence the pace, scope, and other aspects of
development to ensure and improve adequacy.

• One way of modeling SLO/SLI results requires establishing an error budget for a service for a given
period of time and then subtracting failures to achieve SLO from this value.

Core Principles of DevOps
DevOps and SRE

KIS FRI UNIZA20

DevOps/SRE is co-evolving with technologies like virtualization and containerization, enabling a unified
approach and unified tool set to support coordinated application and infrastructure engineering.

More information about SRE:

https://sre.google/books/

DevOps and SRE Summary
DevOps and SRE

Basic Automation Scripting

21

KIS FRI UNIZA22

• Powerful automation tools like Ansible, Puppet, and Chef bring ease of use, predictability, discipline
and the ability to work at scale to DevOps work.

• Although automation tooling partly works by wrapping shell functionality, operating system utilities, API
functions and other control plane elements for simplicity, uniformity, feature enrichment, and
compatibility in DevOps scenarios, these tools still do not solve every problem of deployment and
configuration.

• Every automation tool has one or more functions that execute basic commands and scripts on targets
and return results.

• It is therefore important to have basic automation scripting skills.

Introduction to Basic Automation Scripting
Basic Automation Scripting

KIS FRI UNIZA23

Shells are ubiquitous, so shell scripting is historically the bedrock of automation.

Bash
• The Bash is a Unix shell and is a default on most Linux distributions and on macOS. Using commands

in a Bash script is much the same as using them directly from the command line.
• Bash can be used to script access to the AWS CLI, you can use the built-in features and libraries of

more sophisticated languages to parse complex returned datasets (such as JSON), manage many
parallel operations, process errors, handle asynchronous responses to commands, and more.

Programming languages beyond Bash
• Sophisticated languages improve on Bash when complexity and scale requirements increase. They

are useful when building and operating virtualized infrastructure in cloud environments, using SDKs.

Basic Tools for Automation Scripting
Basic Automation Scripting

KIS FRI UNIZA24

• An imperative procedure is an ordered sequence of commands aimed at achieving a goal. The
sequence may include flow-control, conditions, functional structure, classes, and more.

• To ensure efficiency and reusability of scripts one can:
• Standardize the ordering and presentation of parameters, flags, and errors.
• Create a code hierarchy that divides tasks logically and efficiently.
• Create high-level scripts for entire deployments and lower-level scripts for deployment phases.
• Separate deployment-specific data from the code, making the code as generic and reusable as

possible.

Procedural Automation
Basic Automation Scripting

KIS FRI UNIZA25

• Carefully-written procedural scripts and declarative
configuration tools examine targets before
performing tasks on them, and only perform the
tasks needed to achieve the desired state.

• This quality of software is called idempotency.
• Basic principles of idempotency are:

• Ensure the change you want to make has not
already been made

• Get to a known-good state, if possible, before
making changes

• Test for idempotency
• All components of a procedure must be

idempotent

Procedural Automation
Basic Automation Scripting

KIS FRI UNIZA26

To configure remote systems, the user need to access and execute scripts on them. There are many
ways to do this:
• Store scripts locally, transmit them to target machines with a shell utility like scp, then log into the

remote machine using ssh and execute them.
• Pipe scripts to a remote machine using cat | ssh and execute them in sequence with other commands,

capturing and returning results to the terminal, all in one command.
• Install a general-purpose secure file-transfer client like SFTP, then use that utility to connect to the

remote machine, transfer, set appropriate permissions, then execute the script file.
• Store scripts on a webserver, log into the remote machine and retrieve them with wget, curl, or other

utilities, or store the scripts in a Git repository.
• Install a full remote-operations solution like VNC or NoMachine locally, install its server on the target,

transmit/copy and then execute scripts.
• If the target devices are provisioned on a cloud framework, there is usually a way to inject a

configuration script via the same CLI command or WebUI action that manifests the platform.

Executing Scripts Locally and Remotely
Basic Automation Scripting

KIS FRI UNIZA27

• Cloud automation enables the user to provision virtualized hosts, configure virtual networks and other
connectivity, requisition services, and then deploy applications on this infrastructure.

• Cloud providers and open source communities often provide specialized subsystems for popular
deployment tools, which extract a complete inventory of resources from a cloud framework and keep it
updated in real time while automation makes changes.

• The user can also manage cloud resources using scripts written in Bash, Python, or other languages.

Cloud Automation
Basic Automation Scripting

KIS FRI UNIZA28

IaaS and other types of infrastructure cloud also provide CLIs and SDKs that enable easy connection to
their underlying interfaces, which are usually REST-based.

Cloud CLIs and SDKs
Basic Automation Scripting

Cisco UCS - a bare
metal cloud

• Cisco Intersight RESTful API
• Range of SDKs for the Intersight RESTful API, including ones for Python and Microsoft

PowerShell
• Range of Ansible modules

VMWare • Datacenter CLI
• vSphere CLI for Linux and Windows
• PowerCLI for Windows PowerShell
• Host of SDKs for popular languages, aimed at vSphere Automation, vCloud Suite, and

other products

OpenStack • OpenStack Client (OSC)
• OpenStack Compute, Identity, Image, Object Storage, and Block Storage APIs
• OpenStack Python SDK
• OpenStack Toolkits

AWS • AWS CLI
• AWS REST API
• AWS SDK

KIS FRI UNIZA29

Basic automation scripting techniques are great to have in the toolbox and
understanding them will improve the facility as an operator and user of mature
automation platforms.

Summary of Basic Automation Scripting
Basic Automation Scripting

Automation Tools

30

KIS FRI UNIZA31

• In this topic, the three most popular automation tools, Ansible, Puppet, and Chef, are being
discussed.

• There will also be an option to install one or all of them on the local workstation.
• To try this, one must have access to a Linux-based workstation, such as Ubuntu or macOS

and must refer to the tool's own installation documentation for the operating system.

Introduction to Automation Tools
Automation Tools

KIS FRI UNIZA32

What do automation tools do for us?

Automation tools offer powerful capabilities compared to ad-hoc automation strategies using BASH,
Python, or other programming languages. These tools enable developers to:
• Simplify and standardize
• Accelerate development with out-of-the-box features
• Facilitate reusability, segregate concerns, promote security
• Perform discovery and manage inventory
• Handle scale
• Engage community

What Do Automation Tools Do For Us?
Automation Tools

KIS FRI UNIZA33

Idempotency: a review
• An Idempotent software produces the same desirable result each time that it is run.
• In a deployment software, Idempotency enables convergence and composability and allows to:

• More easily gather components in collections that build new kinds of infrastructure and perform
new operations tasks.

• Execute whole build/deploy collections to safely repair small problems with infrastructure, perform
incremental upgrades, modify configuration, or manage scaling.

Procedure vs. Declarative
• Procedural code can achieve idempotency, but many infrastructure management, deployment, and

orchestration tools have adopted another method, which is creating a declarative.
• A declarative is a static model and is used by middleware that incorporates deployment-specific

details, examines present circumstances, and brings real infrastructure into alignment with the model,
and usually least time-consuming path.

Critical Concepts
Automation Tools

KIS FRI UNIZA34

Idempotency: a review
• An Idempotent software produces the same desirable result each time that it is run.
• In a deployment software, Idempotency enables convergence and composability and allows to:

• More easily gather components in collections that build new kinds of infrastructure and perform
new operations tasks.

• Execute whole build/deploy collections to safely repair small problems with infrastructure, perform
incremental upgrades, modify configuration, or manage scaling.

Procedure vs. Declarative
• Procedural code can achieve idempotency, but many infrastructure management, deployment, and

orchestration tools have adopted another method, which is creating a declarative.
• A declarative is a static model and is used by middleware that incorporates deployment-specific

details, examines present circumstances, and brings real infrastructure into alignment with the model,
and usually least time-consuming path.

Critical Concepts
Automation Tools

KIS FRI UNIZA35

 Provisioning vs. configuration vs. deployment vs. orchestration

Critical Concepts
Automation Tools

Provisioning Configuration Deployment Orchestration

This refers to obtaining
compute, storage, and
network infrastructure
(real or virtual),
enabling
communications,
putting it into service,
and making it ready for
use by operators and
developers.

This means installing
base applications and
services, and
performing the
operations, tasks, and
tests required to
prepare a low-level
platform to deploy
applications or a higher-
level platform.

This involves building,
arranging, integrating,
and preparing multi-
component applications
or higher-level platforms,
often across multiple
nodes.

This may refer to several
things:
• User-built or platform-inherent

automation aimed at
managing workload lifecycles
and reacting dynamically to
changing conditions.

• Processes or workflows that
link automation tasks to
deliver business benefits, like
self-service.

KIS FRI UNIZA36

Statelessness

Automation works best when applications
can be made stateless. This means that
redeploying them in place does not destroy
or lose track of the data that users or
operators need.

The two states of an application are:
• Not Stateless – An app that saves

important information in files or in a
database on the local file.

• Stateless – An app that persists its state
to a separate database or that provides
service that requires no memory of state
between invocations.

Critical Concepts
Automation Tools

KIS FRI UNIZA37

• The first modern automation tool was Puppet which was introduced in 2005 as open source, and then
commercialized as Puppet Enterprise by Puppet Labs in 2011.

• The most popular automation tools are Ansible, Puppet, Chef. They share the following
characteristics:

• Relatively easy to learn
• Available in open source versions
• Plugins and adapters enable them to directly or indirectly control many types of resources

• Many other solutions also exist. Private and public cloud providers often endorse their own tools for use
on their platforms such as OpenStack's HEAT project, AWS' CloudFormation, SaltStack and Terraform.

Popular Automation Tools
Automation Tools

KIS FRI UNIZA38

• Ansible is available as open source, and in a version with added features, from IBM/Red
Hat, called Ansible Tower.

• Ansible is substantially managed from the Bash command line, with automation code
developed and maintained using any standard text editor.

Ansible
Automation Tools

KIS FRI UNIZA39

Ansible Architecture: Simple and Lightweight
• Control node runs on any Linux machine

running Python 2 or 3. All system updates are
performed on control node.

• Control node connects to managed resources
over SSH and enable Ansible to:

 Run shell commands on a remote
server, or transact with a remote router,
or other network entity, via its REST
interface.

 Inject Python scripts into targets and
remove them after they run.

 Install Python on target machines if
required.

• Plugins enable Ansible to gather facts from
and perform operations on infrastructure that
can't run Python locally.

Ansible
Automation Tools

KIS FRI UNIZA40

Installing Ansible
• The Ansible control node application is installed on a Linux machine from its public package

repository. To install Ansible on a workstation, refer to the installation documentation appropriate to the
device.

Ansible code structure
• In the Ansible code structure, work is separated into YAML (.yml) files that contain a sequence of

tasks, executed in top-down order. Ansible has hundreds of pre-built Python modules that wrap
operating-system-level functions and meta-functions.

Playbooks and roles
• An Ansible playbook can be written as a monolithic document with a series of modular, named tasks.
• Developers build a model of a complex DevOps task out of low-level playbook task sequences called

roles and then reference these in higher-level playbooks, sometimes adding additional tasks at the
playbook level.

• This segregation of concerns ensures clarity, reusability and shareability of roles.

Ansible
Automation Tools

KIS FRI UNIZA41

Ansible project organization

Ansible projects are organized in a nested directory structure. The hierarchy is easily placed under
version control and used for GitOps-style infrastructure as code.

Ansible folder hierarchy elements include Inventory files, Variable files, Library and utility files, Main
playbook files.

Ansible at scale
• There are scaling challenges for large organizations, such as managing and controlling access to

many Ansible nodes flexibly and securely. This also includes putting remote controllers seamlessly
and safely under control of centralized enterprise automation.

• For this, there are two control-plane solutions: Red Hat Ansible Tower and AWX project.
• Larger-scale Ansible implementations also benefit from Ansible Vault, a built-in feature that enables

encryption of passwords and other sensitive information.

Ansible
Automation Tools

KIS FRI UNIZA42

Cisco Ansible resources

Cisco and the Ansible community maintain extensive libraries of Ansible modules for automating Cisco
compute and network hardware including:
• A very large set of built-in modules for configuring Cisco Application-Centric Infrastructure fabrics via

the Application Policy Infrastructure Controller (APIC).
• Remote control of Cisco network devices running IOS-XR, IOS-XE, IOS, NX-OS, ASA, plus modules

for sending commands and retrieving results from these devices via CLI, or via the standard
NETCONF REST interface.

• Ansible modules for configuring Cisco UCS infrastructure via the Intersight REST interface.

Ansible
Automation Tools

KIS FRI UNIZA43

• Ansible normally uses ssh to connect with remote hosts and execute commands.
• Let's see how to create a simple website on a remote host.

Prerequisites
• A target host running a compatible operating system (such as Ubuntu 18.04 server)
• SSH and keywise authentication configured on that host
• Ansible installed on your local workstation

Ansible Example
Automation Tools

KIS FRI UNIZA44

Building an Ansible project file tree
• For the purposes of this exercise, the target machine's

(DNS-resolvable) hostname is target.
• With your target machine SSH-accessible, begin

building a base folder structure for the Ansible project.

• At the top level in your project folder, you need:
• An inventory file, containing information about the

machine(s) on which you want to deploy.
• A top level site.yml file, containing the most abstract

level of instructions.
• A role folder structure to contain your webserver role.

Ansible Example
Automation Tools

KIS FRI UNIZA45

Creating your inventory file
• Your inventory file for this project can be very simple.

Make it the DNS-resolvable hostname of your target
machine:

• You are defining a group called webservers and putting
your target machine's hostname (or IP) in it.

• You could add new hostnames/IPs to this group block,
or add additional group blocks, to assign hosts for more
complex deployments.

Ansible Example
Automation Tools

KIS FRI UNIZA46

Creating your top level playbook file
• A top-level playbook typically describes the order,

permissions, and other details under which lower-level
configuration acts, defined in roles, are applied.

• In this example, site.yml file identifies which hosts you
want to perform an operation on, and which roles you
want to apply to these hosts.

• The line become: true tells Ansible that you want to
perform the roles as root, via sudo.

Creating your webservers role
• Next step is to create the role that installs and

configures your web server.
• You've already created the folder structure for the role

using ansible-galaxy.
• Code for the role is contained in a file called main.yml in

the role's /tasks directory.

Ansible Example
Automation Tools

KIS FRI UNIZA47

• You can edit roles/webserver/tasks/main.yml file directly,
as shown here.

• The role has two tasks:
• Deploy Apache2.
• Copy a new index.html file into the Apache2 HTML

root, replacing the default index.html page.
• In the apt: stanza, you name the package, its required

state, and instruct the apt module to update its cache.
• In the second stanza, Ansible's copy routine moves a

file from your local system to a directory on the target
and also changes its owner and permissions.

Ansible Example
Automation Tools

KIS FRI UNIZA48

Creating your index.html file
• Of course, you will need to create a new index.html file

as well.
• The Ansible copy command assumes that such files

will be stored in the /files directory of the role calling
them, unless otherwise specified.

• Navigate to that directory and create the index.html file,
saving your changes afterward.

Ansible Example
Automation Tools

KIS FRI UNIZA49

Running your deployment
• Now you're ready to run your deployment. From the top level directory of your project, you can

do this with the statement:

• -i names your inventory file.
• -u argument names your sudo user.
• -K tells Ansible to ask us for your sudo password, as it begins execution.
• site.yml is the file that governs your deployment.

Ansible Example
Automation Tools

KIS FRI UNIZA50

• If all is well, Ansible should ask us for your BECOME password (sudo password), then return
results similar to the following:

Ansible Example
Automation Tools

• And now, if you visit the IP address of your target machine in a browser, you should see your
new homepage.

KIS FRI UNIZA51

Ansible CI/CD walkthrough

Let's walk through the example as if they were part of a CI/CD pipeline.
• Developer collaborating with you on GitHub commits a change to the website such as in index.html file.
• Next, tests in the repository execute syntax and sanity checks as well as code review rules against

each pull request.
• Next, the CI/CD system prepares an environment and runs predefined tests for any Ansible playbook.

It should indicate the version expected each time and install it. Here's an example pipeline:

Ansible Example
Automation Tools

• After Jenkins is done running the job, you can get a notification that all is ready for staging and you
can push these changes to production with another pipeline, this time for pushing to production.

KIS FRI UNIZA52

Founded as an open source in 2005 and commercialized as Puppet Enterprise by Puppet Labs in 2011.

Puppet
Automation Tools

Architecture components
• A designated server to host main

application components.
• A secure client, also known as a Puppet

Agent.
• Modules to enable connections for cloud

APIs and hardware that cannot run an
agent.

• In scaled-out implementations, a proxy
agent to offload the work of directly
connecting to device CLIs and
exchanging information.

KIS FRI UNIZA53

Installing the Puppet
• Puppet Server requires powerful hardware (or a big VM), and a Network Time Protocol client to be

installed, configured, and tested.
• The agents will need the puppet.conf file configured to communicate with the Puppet Server.
• After client service started, it will have certificate signed by the server. The Server will now be able to

gather facts from the client and update the client state with any configuration changes.

Puppet Code Structure
• Puppet stores components of a project or discrete configuration in a directory tree

(/etc/puppetlabs/code/environments).
• Subsidiary folders are created according to the configuration in puppet.conf or by the operator.
• Puppet comes with a set of basic resources built in. Many additional resources for performing all sorts

of operations can be downloaded and installed from Puppet Forge using the puppet module
command.

Puppet
Automation Tools

KIS FRI UNIZA54

Puppet at Scale
• Puppet Server is somewhat monolithic, and a monolithic installation is recommended by the (open

source) implementors.
• The step to accommodate more hosts is to create additional "compile masters", which compile

catalogs for client agents and place these behind a load balancer to distribute work.
• Puppet Enterprise customers can further expand capacity by replacing PuppetDB with a stand-alone,

customized database called PE-PostgreSQL.

Cisco Puppet resources

Cisco and the Puppet community maintain extensive libraries of modules for automating Cisco compute
and network hardware. These include:
• Cisco IOS modules enabling management of IOS infrastructure
• Cisco UCS modules enabling control of UCS via UCS Manager

Puppet
Automation Tools

KIS FRI UNIZA55

• This exercise describes how to install Puppet and then use Puppet to install Apache 2 on a device.
• This approximates the normal workflow for Puppet operations in an automated client/server

environment.
• Note that modules can be completely generic and free of site-specific information, then separately and

re-usably invoked to configure any number of hosts or infrastructure components.

Installing Puppet Server
• Puppet Server requires powerful hardware (or a big VM), and a Network Time Protocol client to be

installed, configured, and tested.
• Instructions for installing the server can be found in Puppet's documentation.

Puppet Example
Automation Tools

KIS FRI UNIZA56

Installing Puppet Client
• When you have the Puppet Server running, you can install Puppet Agents on a host. For example, on

a Debian-type Linux system, you can install Puppet Agent using a single command:

Puppet Example
Automation Tools

Modify
• When installed, the Puppet Agent needs to be

configured to seek a Puppet Server.
• Add the lines to the file /etc/puppet/puppet.conf

which tells the client, the hostname of your
server and name of the authentication
certificate that you will generate in the next
step.

KIS FRI UNIZA57

• Start the puppet service on the Client:

Puppet Example
Automation Tools

• You should get a response similar to the following:

KIS FRI UNIZA58

Certificate signing
• Puppet Agents use certificates to authenticate with the server before retrieving their configurations.
• When the Client service starts for the first time, it sends a request to its assigned server to have its

certificate signed, enabling communication.
• On the Server, issue the ca list command returns a list of pending certificates.

Puppet Example
Automation Tools

The response should be similar to the following:

KIS FRI UNIZA59

• You can then sign the certificate, enabling management of the remote node:

Puppet Example
Automation Tools

• The response:

• The Server and Client are now securely bound and able to communicate.
• This will enable the Server to gather facts from the Client, and let you create configurations on the

Server that are obtained by the client and used to converge its state (every 15 minutes).

KIS FRI UNIZA60

Creating a configuration
• Puppet lets you store components of a project or discrete configuration in a directory tree.

Puppet Example
Automation Tools

• Subsidiary folders are created according to the configuration in puppet.conf or by the operator.
• In this example, having declared environment = production, Puppet has already created a directory for

this default site, containing a modules subdirectory in which we can store subsidiary projects and
manifests for things we need to build and configure.

KIS FRI UNIZA61

• You will now install Apache2 on your managed client. Puppet operations are typically performed as
root, so become root on the Server temporarily by entering sudo su -.

• Navigate to the /modules folder in the /production environment.

Puppet Example
Automation Tools

• Inside the manifests folder, create a file called init.pp, which is a reserved filename for the
initialization step in a module.

• Create a folder structure to contain the install apache module.

KIS FRI UNIZA62

• The class definition orders the steps we want to
perform:
• Step 1. Invoke the package resource to install

the named package by ensure =>installed.
• Step 2. Invoke the service resource to run if

its requirement is met. Instruct it to ensure
that the service is available, and then enable
it to restart automatically when the server
reboots.

Puppet Example
Automation Tools

KIS FRI UNIZA63

• Navigate to the associated manifests folder.

Puppet Example
Automation Tools

• Create a site.pp file that invokes the module and applies it to the target machine.

KIS FRI UNIZA64

Deploying the configuration

You have two options to deploy the completed configuration:
• Restarting the Puppet Server will now cause the manifests to be compiled and made available to the

Puppet Agent on the named device. The agent will retrieve and apply them, installing Apache2 with
the next update cycle:

Puppet Example
Automation Tools

• For development and debugging, you can invoke Puppet Agent on a target
machine. The agent will immediately interrogate the server, download its catalog
and apply it. The results will be similar to the following:

KIS FRI UNIZA65

• The agent will immediately interrogate the server, download its catalog and apply it. The results will be
similar to the following:

Puppet Example
Automation Tools

• After the application has been successfully deployed, enter the target machine's IP address in your
browser. This should bring up the Apache 2 default homepage.

KIS FRI UNIZA66

• Chef provides a complete system for treating infrastructure as code.
• Chef products are partly licensed, but free for personal use (in Chef Infra Server's case, for fewer than

25 managed nodes).
• Chef's products and solutions enable infra-as-code creation, testing, organization, repository storage,

and execution on remote targets, either from a stand-alone Chef Workstation, or indirectly from a
central Chef Infra Server.

Chef
Automation Tools

KIS FRI UNIZA67

Chef Architecture – Components
• Chef Workstation
• Chef Infra Client (the host agent)
• Chef Infra Server

Most configuration tasks can also be
carried out directly between Chef
Workstation and managed nodes and
devices.

Chef
Automation Tools

KIS FRI UNIZA68

Components of Chef Workstation include command-line tools, interaction with Chef Infra Servers, Test
Kitchen, ChefSpec and InSpec.

Installing Chef Workstation
• To begin using Chef, the first step is to install Chef Workstation, which provides a complete operations

environment. Refer to the Chef Workstation downloads page for more information.
• The Workstation is available for Linux and Windows.

Running Chef at scale
• Chef Infra Server can be configured for high availability by deploying its front-end services into an

array of load-balanced proxies.
• Chef also provides an array of products that together solve most of the problems enterprises face in

dealing with increasingly-complex, large-scale, hybrid infrastructures.

Chef
Automation Tools

KIS FRI UNIZA69

Cisco Chef Resources
• Cisco has developed modified Chef Infra Agents that run in the guest shell of NX-OS switch

equipment, enabling this hardware to work with Chef as if it were a managed host.
• It has also developed and maintains a Cisco Chef Cookbook for NX-OS infrastructure, available on

Chef Supermarket.
• A GitHub public repo of cookbook and recipe code is also maintained to enable control of a wide range

of Cisco products.
• Cisco UCS infrastructure is easily managed with Chef through a cookbook enabling integration with

Integrated Management Controllers.

Chef
Automation Tools

KIS FRI UNIZA70

This example describes how to install Chef and use it to install Apache 2 on a device.

Installing Chef Workstation

Chef Workstation provides a complete operations environment. The following example assume that you
are installing on an Ubuntu 18.04 LTS virtual machine.
• If your machine is set up with a standard desktop, browse to the Chef Workstation downloads page,

find the download for Ubuntu 18.04, and install it automatically with the Debian package manager.
• Alternatively, you can install from the command line by copying the URL of the .deb package.

Chef Example – Install and Use Chef
Automation Tools

KIS FRI UNIZA71

Basic Configuration Management
• After Workstation is installed, start making configuration changes on accessible hosts.
• You will use the chef-run command for this. The first time you use chef-run, you may be asked to

accept licensing terms for the utility.
• For the first configuration exercise, you will provide the information Chef needs to install the ntp

package. In the process, you will provide the remote username, their sudo password, the name of the
remote host target and the name of the resource verb.

Chef Example – Install and Use Chef
Automation Tools

• When the client is installed, the task is handed to it, and the process completes. You get back as
follows:

KIS FRI UNIZA72

Install Chef Infra Client
• Chef Infra Client runs locally on conventional compute nodes.
• Chef Workstation can bootstrap Infra Client onto target nodes. You can also preinstall Infra Client on

nodes, for example, while creating new nodes on a public cloud. Below is an example script you might
run on a target host to do this.

• The script uses a Chef-provided installer called Omnitruck to do this. A Windows version of this script
is also available that runs on PowerShell:

Chef Example – Install and Use Chef
Automation Tools

• Note that the parameters shown above will install the latest version of the Chef client, and do not
pin the version.

KIS FRI UNIZA73

Chef Infra Server prerequisites
• Before installing Chef Infra Server, install openssh-server and enable keywise access. You would also

need to install NTP for time synchronization. You can do this with Chef, or manually:

Chef Example – Install and Use Chef
Automation Tools

• On an Ubuntu system, turn off the default timedatectl synchronization service to prevent it from
interfering with NTP synchronization:

• After NTP is installed, ensure that it is synchronizing with a timeserver in its default pool. This may
take a few minutes, so repeat the command until you see the following:

• When this shows up, you can install Chef Infra Server.

KIS FRI UNIZA74

Install Chef Infra Server
• Chef Infra Server stores configuration and provides it to Clients automatically, when polled, enabling

Clients to converge themselves to a desired state.
• To install Chef Infra Server on Ubuntu 18.04, you can perform steps similar to the manual Workstation

install after obtaining the URL of the .deb package. At time of writing, the current stable version was
13.1.13-1.

Chef Example – Install and Use Chef
Automation Tools

• After Chef Infra Server is installed, issue the following command to tell it to read its default
configuration, initialize, and start all services.

KIS FRI UNIZA75

Install Chef-Manage
• You can also install the web interface for Chef server. This can be done by entering:

Chef Example – Install and Use Chef
Automation Tools

• When the process completes, restart the server and manage components. These are Chef
operations, and may take a while, as before.

• The argument --accept-license prevents chef-manage-ctl from stopping to ask you about the unique
licenses for this product. When this process is complete, you can visit the console in a browser
via https://<IP_OF_CHEF_SERVER>.

KIS FRI UNIZA76

Install Chef-Manage
• You can also install the web interface for Chef server. This can be done by entering:

Chef Example – Install and Use Chef
Automation Tools

• When the process completes, restart the server and manage components. These are Chef
operations, and may take a while, as before.

• The argument --accept-license prevents chef-manage-ctl from stopping to ask you about the unique
licenses for this product. When this process is complete, you can visit the console in a browser
via https://<IP_OF_CHEF_SERVER>.

KIS FRI UNIZA77

Finish configuring Workstation
• Before Chef Workstation can talk to your Infra Server, you need to do a little configuration.
• To begin, retrieve the keys generated during Server configuration, and store them in the folder

/home/myname/.chef created during Workstation installation:

Chef Example – Install and Use Chef
Automation Tools

• /path/ is the path from your home directory on the Server to the directory in which the Server stored
keys.

• If you are not using keywise authentication to your Server, scp will ask for your password.
• The . after user@host: refers to your original user's home directory, from which the path is figured.
• The wildcard expression finds files ending in .pem at that path. The closing dot means copy to the

current working directory.
• Run the ls command from within the .chef folder to see if your keys made it.

KIS FRI UNIZA78

Prepare to use Knife

Knife is a tool for managing cookbooks, recipes, nodes, and other assets, and for interacting with the
Chef Infra Server.
• Within the .chef folder, folder, edit the (initially empty) file named config.rb and include the following

lines of code, adapting them to your environment:

Chef Example – Prepare to Use Knife
Automation Tools

KIS FRI UNIZA79

• Save the config.rb file and then create the directory /home/myname/cookbooks.
• Finally, issue the command knife ssl fetch.
• If you have correctly set up the config.rb, Knife will consult with your server, retrieve its certificate, and

store it in the directory.
• Chef will find this automatically when it is time to connect with the server, providing assurance that the

server is authentic.

Chef Example – Prepare to Use Knife
Automation Tools

KIS FRI UNIZA80

Bootstrap a target node with knife
• After Knife is configured, you can bootstrap your target node.
• To bootstrap, issue the following command, replacing variable fields with your information. The

command is set up to use keywise authentication to the target machine.
• The redundant --sudo and --use-sudo-password commands tell Knife to use sudo to complete its work.
• The -P option provides your sudo password on the target machine.
• <name_for_your_node> is an arbitrary name. The --ssh-verify-host-key never flag and argument cause

the command not to pause and ask your permission interactively if it finds that you've never logged
into this server before.

Chef Example – Prepare to Use Knife
Automation Tools

KIS FRI UNIZA81

If the command works correctly, you would get
back the given output. Note that Chef has
detected the earlier installation and has not
overwritten it.

Chef Example – Prepare to Use Knife
Automation Tools

KIS FRI UNIZA82

Chef Manage Displays Your Target Node: Now, if you check back in your browser and refresh Chef
Manage, you should see that your target machine is now being managed by the server.

Chef Example – Prepare to Use Knife
Automation Tools

KIS FRI UNIZA83

Now you will use everything together to create an actual recipe, push it to the server, and tell the target
machine's client to requisition and converge on the new configuration.
• To start, create a cookbook to build a simple website. Navigate to your cookbooks directory, create a

new cookbook called apache2 and navigate in it.
• Check the cookbook folder structure. There are folders already prepared for recipes and attributes.

Add an optional directory and subdirectory for holding files your recipe needs.
• Files in the /default subdirectory of a /files directory within a cookbook can be found by recipe name

alone, no paths are required.

Chef Example – Putting it all Together
Automation Tools

KIS FRI UNIZA84

• Now create a homepage for your website.

Chef Example – Putting it all Together
Automation Tools

• Save the file and exit. Navigate to the recipes directory , where Chef has already created a
default.rb file for us. The default.rb file will be executed by default when the recipe is run with this
command.

• Add some data to the default.rb file and again edit the file.

KIS FRI UNIZA85

• The header at the top is created for you.
Underneath, the recipe performs three
actions.
• The first resource you are invoking

apt_update handles the apt package
manager on Debian.

• The package function is used to
install the apache2 package from
public repositories.

• Finally, you use the cookbook_file
resource to copy the index.html file
from /files/default into a directory on
the target server.

Chef Example – Putting it all Together
Automation Tools

KIS FRI UNIZA86

• Save the default.rb file and then upload the cookbook to the server.
• You can then confirm that the server is managing your target node.
• The Knife application can interoperate with your favorite editor. To enable this, perform the following

export with your editor's name:

Chef Example – Putting it all Together
Automation Tools

• This lets the next command execute interactively, putting the
node definition into vi to let you alter it manually.

• As you can see, the expression "recipe[apache2]" has been
added to the run_list array which contains an ordered list of the
recipes you want to apply to this node.

• Save the file in the usual manner. Knife immediately pushes the
change to the Infra Server.

KIS FRI UNIZA87

• Finally, you can use the knife ssh command to identify the node, log into it non-interactively using SSH,
and execute the chef-client application.

• If all goes well, Knife gives you back a very long log that shows you exactly the content of the file that
was overwritten and confirms each step of the recipe as it executes.

• At this point, you should be able to point a browser at the target machine's IP address and see your
new index page.

Chef Example – Putting it all Together
Automation Tools

KIS FRI UNIZA88

Summary

This has been a high-level introduction to three modern DevOps toolkits. You should now be ready to:
• Deploy and integrate free versions of the major components of Ansible, Puppet, and/or Chef on a

range of substrates, from desktop virtual machines to cloud-based VMs on Azure, AWS or other IaaS
platforms.

• Experience each platform's declarative language, style of infra-as-code building and organizing, and
get a sense of the scope of its library of resources, plugins, and integrations.

• Get practice automating some of the common IT tasks you may do at work or solve deployment and
lifecycle management challenges you set yourself, in your home lab.

• Hands-on exercises and work will give you a complete sense of how each platform addresses
configuration themes, and help you overcome everyday IT challenges.

Summary of Automation Tools
Automation Tools

Infrastructure as Code

89

KIS FRI UNIZA90

The term immutability refers to maintaining systems entirely as code, performing no manual operations
on them at all.

GitOps: modern infrastructure-as-code
• GitOps is also referred to as "operations by pull request."
• In a typical GitOps setup, you might maintain a repository, such as a private repo on GitHub, with

several branches called Development, Testing/UAT and Production.

Why Store Infrastructure as Code?
Infrastructure as Code

KIS FRI UNIZA91

Where can GitOps take you?

When all the GitOps procedures, workflow and other components are in place, developers can look at
implementing elite deployment strategies.

Blue/Green deployment
• Blue/green deployment is a method for reducing or eliminating downtime in production environments.
• It is required to maintain two identical production environments (Not necessarily, blue and green. Any

two colors such as Red and Black will do).
• It is also required to develop the capability of quickly redirecting application traffic to one or the other.

Why Store Infrastructure as Code?
Infrastructure as Code

KIS FRI UNIZA92

Where can GitOps take you?

When all the GitOps procedures, workflow and other components are in place, developers can look at
implementing elite deployment strategies.

Blue/Green deployment
• Blue/green deployment is a method for reducing or eliminating downtime in production environments.
• It is required to maintain two identical production environments (Not necessarily, blue and green. Any

two colors such as Red and Black will do).
• It is also required to develop the capability of quickly redirecting application traffic to one or the other.

• Some DevOps practitioners differentiate between blue/green and red/black strategies. They say that in
blue/green, the traffic is gradually migrated from one environment to the other, so it hits both systems
for some period; whereas in red/black, traffic is cut over all at once.

Why Store Infrastructure as Code?
Infrastructure as Code

KIS FRI UNIZA93

• A release is deployed to the
environment not currently in use
(Green). After acceptance
testing, redirect traffic to this
environment.

• If problems are encountered,
switch traffic back to the original
environment (Blue).

• If the Green deployment is
judged adequate, resources
owned by the Blue deployment
can be relinquished, and roles
swapped for the next release.

Why Store Infrastructure as Code?
Infrastructure as Code

KIS FRI UNIZA94

Canary Testing
• Canary testing is similar to rolling blue/green deployment, but somewhat more delicate.
• The migration between old and new deployments is performed on a customer-by-customer (or even

user-by-user) basis.
• Migration are made to reduce the risk and improve the quality of feedback.

Why Store Infrastructure as Code?
Infrastructure as Code

Automating Testing

95

KIS FRI UNIZA96

• By using unit testing tools like pytest developers can build an environment where the code can be
tested automatically when changes are made.

• Unit-testing frameworks make tests a part of the codebase, following the code through developer
commits, pull requests, and code-review gates to QA/test and Production. This unit test framework is
useful in test-driven development (TDD) environments.

The challenges of testing a network
• The behavior and performance of a real-world network is collective, maintained by the configurations

of many discrete pieces of equipment and software.
• In traditional environments, connectivity and functionality are manually maintained across numerous

individual pieces of equipment via diverse interfaces. This is difficult, time-consuming, extremely error-
prone, and risky.

• As networks become more complex and carry more diverse and performance-sensitive traffic, risks to
security and performance degradations are higher.

Automated Test and Validation
Automating Testing

KIS FRI UNIZA97

Testing Software Defined Networks (SDN)

Cisco has made huge progress in developing Software Defined Networks (SDN) and middleware that let
engineers to address a physical network as a single programmable entity. In Cisco's case, this includes:
• Application Centric Infrastructure (ACI)
• Digital Network Architecture Center (Cisco DNA Center)
• REST API and SDKs enable integration with automation tools like Ansible, Puppet, and Chef

Python Automated Test System (pyATS)
• Python Automated Test System (pyATS) is a Python-based network device test and validation

solution.
• pyATS originated as the low-level Python underpinning for the test system as a whole.
• Its higher-level library system, Genie, provides the necessary APIs and libraries that drive and interact

with network devices, and perform the actual testing.

Automated Test and Validation
Automating Testing

KIS FRI UNIZA98

pyATS has several key features:
• pyATS framework and libraries can be leveraged within any Python code.
• It is modular and includes components such as AEtest and Easypy.
• A CLI enables rapid interrogation of live networks, extraction of facts, and helps automate running of

test scripts and other forensics.
• pyATS provides an enormous interface library to Cisco and other infrastructure via a range of

interfaces.
• pyATS can consume, parse, and implement topologies described in JSON, as YANG models, and

from other sources.
• pyATS can also be integrated with automation tools for building, provisioning, and teardown.

Automated Test and Validation
Automating Testing

KIS FRI UNIZA99

The following content shows how to use pyATS to create and apply tests.

Virtual environments

The pyATS tool is best installed for personal work inside a Python virtual environment (venv).
• A venv is an environment copied from your base environment, but kept separate from it.
• This enables you to avoid installing software that might permanently change the state of your system.
• Virtual environments exist in folders in your file system. When they are created, they can be activated,

configured at will, and components installed in them can be updated or modified without changes
being reflected in your host's configuration.

• The ability to create virtual environments is native to Python 3, but Ubuntu 18.04 may require you to
install a python3-venv package separately.

pyATS Example
Automating Testing

KIS FRI UNIZA100

To create a venv on Ubuntu 18.04:
• Ensure that python3-pip, the Python3 package manager, is in place and install git.
• Create a new virtual environment in the directory of your choice.
• Venv creates the specified working directory and folder structure containing functions and artifacts

describing this environment's configuration. At this point, you can cd to the myproject and activate the
venv.

Installing pyATS
• Install the pyATS from the public Pip package repository (PyPI).
• Verify that it was installed by listing the help, using pyats --help.
• Clone the pyATS sample scripts repo, maintained by Cisco DevNet, which contains sample files.

• You may see "Failed building wheel for…<wheelname>" errors while installing pyATS. You can safely
ignore those errors as pip has a backup plan for those failures and the dependencies are installed
despite errors reported.

pyATS Example
Automating Testing

KIS FRI UNIZA101

pyATS test case syntax
• The test declaration syntax for pyATS is inspired by Python unit-testing frameworks like pytest.
• It supports basic testing statements, such as an assertion that a variable has a given value, and adds

to that the ability to explicitly provide results.

pyATS scripts and jobs
• A pyATS script is a Python file where pyATS tests are declared.

pyATS testbed file
• A testbed can be a single YAML file or can be programmatically assembled from YAML and Python.
• The testbed file is an essential input to the rest of pyATS library and ecosystem as it provides

information to the framework for loading the right set of library APIs for each device, and how to
effectively communicate to them.

• Real testbed files for large topologies can be long, deeply-nested, and complex.

pyATS Example
Automating Testing

KIS FRI UNIZA102

pyATS Library: Genie
• Genie is the pyATS higher-level library system that provides APIs for interacting with devices, and a

powerful CLI for topology and device management and interrogation.
• When installed, it adds its features and functionalities into the pyATS framework.

pyATS Example
Automating Testing

Network Simulation

103

KIS FRI UNIZA104

• Network simulation provides a means to test network configurations, debug configuration code, and to
work with and learn Cisco infrastructure and APIs in a safe, convenient, and non-cost-prohibitive way.

• Cisco Virtual Internet Routing Laboratory (VIRL) is a commercial product originally developed for
internal use at Cisco, with broad and active community support. Now in version 2, VIRL can run on
bare metal, or on large virtual machines on several hypervisor platforms.

• The virtual equipment that runs inside VIRL uses the same code that runs inside actual Cisco
products.

VIRL components and workflow
• VIRL provides a local CLI for system management, a REST interface for integration with automation,

and a powerful UI that offers a complete graphical environment for building and configuring simulation
topologies.

• The UI comes with several topologies to get started. Among these is a two-router IOS network
simulation that can quickly be made active and explored.

Network Simulation and VIRL
Network simulation

KIS FRI UNIZA105

• VIRL's Design Perspective view
allows to modify existing
simulations or compose new
simulations by dragging, dropping,
and connecting network entities,
configuring them.

• The visualization has clickable
elements that explore configuration
of entities and make changes via
the WebUI, or by connecting to
network elements via console.

Network Simulation and VIRL
Network simulation

KIS FRI UNIZA106

VIRL Files
• The individual device configurations, or entire simulated network configs can be extracted as .virl files.
• VIRL enables you to define simulations as code, enabling both-ways integration with other software

platforms for network management and testing.
• VIRL's native configuration format is called a .virl file which is a human-readable YAML file.
• The .virl file contains complete descriptions of the IOS routers, their interface configurations and

connection, credentials for accessing them, and other details.
• These files can be used to launch simulations via the VIRL REST API and the .virl files can be

converted to and from testbed files to use with PyATS and Genie.
• The .virl file provides a method for determining if configuration drift has occurred on the simulation.

Network Simulation and VIRL
Network simulation

KIS FRI UNIZA107

 GNS3 is used by hundreds of thousands of network engineers worldwide to emulate, configure, test
and troubleshoot virtual and real networks. GNS3 allows you to run a small topology consisting of only
a few devices on your laptop, to those that have many devices hosted on multiple servers or even
hosted in the cloud.

 GNS3 is open source, free software that you can download from http://gns3.com
 It is actively developed and supported and has a growing community of over 800,000 members. By

joining the GNS3 community you will be joining fellow students, network engineers, architects and
others that have downloaded GNS3 over 10 million times to date. GNS3 is used in companies all over
the world including Fortune 500 companies.

 GNS3 has allowed network engineers to virtualize real hardware devices for over 10 years. Originally
only emulating Cisco devices using software called Dynamips, GNS3 has now evolved and supports
many devices from multiple network vendors including Cisco virtual switches, Cisco ASAs, Brocade
vRouters, Cumulus Linux switches, Docker instances, HPE VSRs, multiple Linux appliances and
many others.

GNS3
Network simulation

http://gns3.com/

KIS FRI UNIZA108

 GNS3 consists of two software components:

• The GNS3-all-in-one software (GUI)
• This is the client part of GNS3 and is graphical user interface (GUI). You install the all-in-one

software on your local PC (Windows, MAC, Linux) and create your topologies using this software.

• The GNS3 virtual machine (VM)/server
 The local GNS3 server runs locally on the same PC where you installed the GNS3 all-in-one

software. If for example you are using a Windows PC, both the GNS3 GUI and the local GNS3
server are running as processes in Windows. Additional processes such as Dynamips will also be
running on your PC:

 If you decide to use the GNS3 VM (recommended), you can either run the GNS3 VM locally on your
PC using virtualization software such as VMware Workstation, Virtualbox or Hyper-V; or you can run
the GNS3 VM remotely on a server using VMware ESXi or even in the cloud.

GNS3 Architecture
Network simulation

KIS FRI UNIZA109

GNS3
 Advantages:
• Free software
• Open Source software
• No monthly or yearly license fees
• No limitation on number of devices supported (the only

limitation is your hardware: CPU and memory)
• Supports multiple switching options (NM-ESW16

Etherswitch module, IOU/IOL Layer 2 images, VIRL
IOSvL2):

• Supports all VIRL images (IOSv, IOSvL2, IOS-XRv,
CSR1000v, NX-OSv, ASAv)

• Supports multi vendor environments
• Can be run with or without hypervisors
• Supports both free and paid hypervisors (Virtualbox,

VMware workstation, VMware player, ESXi, Fusion)
• Downloadable, free, pre-configured and optimized

appliances available to simplify deployment
• Native support for Linux without the need for need for

additional virtualization software
• Software from multiple vendors freely available
• Large and active community (800,000+ members)

 Disadvantages:
• Cisco images need to be supplied by user

(download from Cisco.com, or purchase VIRL
license, or copy from physical device).

• Not a self contained package, but requires a
local installation of software (GUI).

• GNS3 can be affected by your PC’s setup and
limitations because of local installation (firewall
and security settings, company laptop policies
etc).

Network simulation

Summary: Infrastructure and Automation

110

KIS FRI UNIZA111

• Automation is using code to configure, deploy, and manage applications together with the
compute, storage, and network infrastructures and services on which they run.

• Cloud computing, lets developers and operators use software to requisition, configure,
deploy, and manage bare-metal and virtualized compute, storage, and network resources.

• For full-stack automation to be truly effective, it requires changes to organizational culture,
including breaking down the historical divides between Development (Dev) and Operations
(Ops).

• DevOps/SRE have many core principles and best practices: A focus on automation, the
idea that failure is normal and a reframing of availability in terms of what a business can
tolerate.

• Cloud automation enables you to provision virtualized hosts, configure virtual networks and
other connectivity, requisition services, and then deploy applications on this infrastructure.

• Three of the most popular automation tools are Ansible, Puppet, and Chef.
• Immutability refers to maintaining systems entirely as code, performing no manual

operations on them at all.

Module summary

KIS FRI UNIZA112

• The unit test framework is useful in test-driven development (TDD) environments.
• Network simulation provides a means to test network configurations, debug configuration

code, and to work with and learn Cisco infrastructure and APIs in a safe, convenient, and
non-cost-prohibitive way.

• Cisco Virtual Internet Routing Laboratory (VIRL) can run on bare metal or on large virtual
machines on several hypervisor platforms.

Module summary

Vytvorené v rámci projektu KEGA 026TUKE-4/2021

Thank you for your attention.

The content was chapter from DevNet Associate Module
• M7 – Infrastructure and Automation

	Lecture 10 – Infrastructure and Automation
	Outline
	Automating Infrastructure
	Introduction to Automating Infrastructure
	Automation Solutions
	Why Do We Need Automation?
	Why Do We Need Automation? (2)
	Why Do We Need Full - Stack Automation?
	Software-Defined Infrastructure: A Case for Automation
	Distributed and Dynamic Applications: Another Case for Automati
	Distributed and Dynamic Applications: Another Case for Automati (2)
	Automating Infrastructure Summary
	DevOps and SRE
	Introduction to DevOps and SRE
	DevOps Divide
	DevOps Divide (2)
	Evolution of DevOps
	Core Principles of DevOps
	Core Principles of DevOps (2)
	DevOps and SRE Summary
	Basic Automation Scripting
	Introduction to Basic Automation Scripting
	Basic Tools for Automation Scripting
	Procedural Automation
	Procedural Automation (2)
	Executing Scripts Locally and Remotely
	Cloud Automation
	Cloud CLIs and SDKs
	Summary of Basic Automation Scripting
	Automation Tools
	Introduction to Automation Tools
	What Do Automation Tools Do For Us?
	Critical Concepts
	Critical Concepts (2)
	Critical Concepts (3)
	Critical Concepts (4)
	Popular Automation Tools
	Ansible
	Ansible (2)
	Ansible (3)
	Ansible (4)
	Ansible (5)
	Ansible Example
	Ansible Example (2)
	Ansible Example (3)
	Ansible Example (4)
	Ansible Example (5)
	Ansible Example (6)
	Ansible Example (7)
	Ansible Example (8)
	Ansible Example (9)
	Puppet
	Puppet (2)
	Puppet (3)
	Puppet Example
	Puppet Example (2)
	Puppet Example (3)
	Puppet Example (4)
	Puppet Example (5)
	Puppet Example (6)
	Puppet Example (7)
	Puppet Example (8)
	Puppet Example (9)
	Puppet Example (10)
	Puppet Example (11)
	Chef
	Chef (2)
	Chef (3)
	Chef (4)
	Chef Example – Install and Use Chef
	Chef Example – Install and Use Chef (2)
	Chef Example – Install and Use Chef (3)
	Chef Example – Install and Use Chef (4)
	Chef Example – Install and Use Chef (5)
	Chef Example – Install and Use Chef (6)
	Chef Example – Install and Use Chef (7)
	Chef Example – Install and Use Chef (8)
	Chef Example – Prepare to Use Knife
	Chef Example – Prepare to Use Knife (2)
	Chef Example – Prepare to Use Knife (3)
	Chef Example – Prepare to Use Knife (4)
	Chef Example – Prepare to Use Knife (5)
	Chef Example – Putting it all Together
	Chef Example – Putting it all Together (2)
	Chef Example – Putting it all Together (3)
	Chef Example – Putting it all Together (4)
	Chef Example – Putting it all Together (5)
	Summary of Automation Tools
	Infrastructure as Code
	Why Store Infrastructure as Code?
	Why Store Infrastructure as Code? (2)
	Why Store Infrastructure as Code? (3)
	Why Store Infrastructure as Code? (4)
	Why Store Infrastructure as Code? (5)
	Automating Testing
	Automated Test and Validation
	Automated Test and Validation (2)
	Automated Test and Validation (3)
	pyATS Example
	pyATS Example (2)
	pyATS Example (3)
	pyATS Example (4)
	Network Simulation
	Network Simulation and VIRL
	Network Simulation and VIRL (2)
	Network Simulation and VIRL (3)
	GNS3
	GNS3 Architecture
	GNS3 (2)
	Summary: Infrastructure and Automation
	Module summary
	Module summary (2)
	Thank you for your attention.

