
Vytvorené v rámci projektu KEGA 026TUKE-4/2021

• DevNet Associate M4 – Understanding and Using APIs

Lecture 8 – APIs

Outline

Topic Title Topic Objective

Introducing APIs Explain the use of APIs.

API Design Styles Compare synchronous and asynchronous API design styles.

API Architecture Styles Describe common API architecture styles.

Introduction to REST APIs Explain the functions of REST APIs.

Authenticating a REST API Create REST API requests over HTTPS to securely integrate services.

API Rate Limits Explain the purpose of API rate limits

Working with Webhooks Explain the use of webhooks.

Troubleshooting API calls Explain how to troubleshoot REST APIs

Introducing APIs

KIS FRI UNIZA4

What is an API?

• An Application Programming
Interface (API) allows one piece
of software talk to another.

• It uses common web-based
interactions or communication
protocols and its own proprietary
standards.

• An API determines what type of
data, services, and functionality
the application exposes to third
parties.

• By providing APIs, applications
can control what they expose in a
secure way.

Understanding and Using APIs

Example of different types of API integrations

KIS FRI UNIZA5

• APIs are built to be consumed programmatically by other applications and
they can also be used by humans who want to interact with the application
manually.

Use cases of APIs are as follows:
• Automation tasks – Build a script that performs manual tasks

automatically and programmatically.
• Data integration – An application can consume or react to data provided

by another application.
• Functionality – An application can integrate another application's

functionality into its product.

Why use APIs?
Understanding and Using APIs

KIS FRI UNIZA6

• APIs have existed for decades, but exposure and consumption of APIs has
grown exponentially in the last 10 years or so.

• Most modern APIs are designed into the product and are thoroughly tested.
• Simplified coding languages such as Python have made it possible for non-

software engineers to build applications and consume APIs.

Why are APIs so popular?
Understanding and Using APIs

API Design Styles

7

KIS FRI UNIZA8

• A product’s set of APIs may consist of both synchronous and asynchronous
designs, where each API’s design is independent of the others.

• The application consuming the API manages the response differently
depending on the API design.

Types of Design Styles
API Design Styles

KIS FRI UNIZA9

Synchronous APIs
• Synchronous APIs respond to a request directly

by providing data immediately.

When are APIs synchronous?

• APIs are synchronous when the data for
the request is readily available.

Benefits of a synchronous API design

• Synchronous APIs enable the application to
receive data immediately. If the API is
designed correctly, the application
performance will be better.

Client side processing

 The application that is making the API
request must wait for the response before
performing any additional code execution
tasks.

API Design Styles

Synchronous APIs

Tickets are sold in first-come,
first served order. This is a
synchronous process.

KIS FRI UNIZA10

Asynchronous APIs
• Asynchronous APIs provide a response (with

no data) to signify that the request has been
received.

When are APIs asynchronous?

• APIs are asynchronous when the request
takes some time for the server to process
or if data isn’t readily available.

Benefit of asynchronous API design

• Asynchronous APIs allow the application to
continue execution without being blocked
till the server processes the request, thus
resulting in better performance.

Client-side processing

• With asynchronous processing, the design
of the API on the server side defines the
requirement on the client side.

API Design Styles

Asynchronous APIs

API Architectural Styles

11

KIS FRI UNIZA12

• There are certain standards, protocols, and specific architectural styles which make it
easier for consumers of the API to learn and understand the API.

• The three most popular types of API architectural styles are :
• RPC

• SOAP

• REST

Common Architectural Styles
API Architectural Styles

KIS FRI UNIZA13

Remote Procedure Call (RPC)
• Remote Procedure Call (RPC) is a request-

response model that allows an application to
make a procedure call to another application.

• When RPC is called to a client, the method
gets executed and the results get returned.

• RPC is an API style that can be applied to
different transport protocols such as:

• XML-RPC
• JSON-RPC
• NFS (Network File System)
• Simple Object Access Protocol (SOAP)

API Architectural Styles

Remote Procedure Call client-server
request/response model

KIS FRI UNIZA14

• Simple Object Access Protocol (SOAP) is a XML- based messaging protocol. It is used for
communication between applications on different platforms or built with different programming
languages.

SOAP is:
• Independent: All applications can communicate with each other and run on different operating

systems
• Extensible: Add features such as reliability and security
• Neutral: Can be used over any protocol, including HTTP, SMTP, TCP, UDP, or JMS

A SOAP message is an XML document that may contain the following four elements:
• Envelope – the root element of XML document.
• Header - contains application-specific information such as authorization, SOAP-specific attributes and

so on
• Body - contains the data to be transported to the recipient
• Fault - provides error and/or status information.

Simple Object Access Protocol (SOAP)
API Architectural Styles

KIS FRI UNIZA15

• The following screenshot is an example of a SOAP message:

Simple Object Access Protocol (SOAP)
API Architectural Styles

KIS FRI UNIZA16

• REpresentational State Transfer (REST) is an architectural style authored by Roy Thomas Fielding.
• Roy has established six constraints that can be applied to any protocol in REST.

REpresentational State Transfer (REST)
API Architectural Styles

KIS FRI UNIZA17

REpresentational State Transfer (REST)
Client-server
• The client and server should be independent

of each other.
• This will enable the client to be built for

multiple platforms which will simplify the
server-side components.

Stateless
• Requests from the client to the server must

contain REST client-server model and all the
information which the server needs to make
the request.

• The server cannot contain session states.

API Architectural Styles

REST client-server model

REST stateless model

KIS FRI UNIZA18

REpresentational State Transfer (REST)
Cache model:
• Responses from the server must state

whether the response is cacheable or non-
cacheable.

• If it is cacheable, the client can use the data
from the response for later requests.

Uniform interface:

The interface between the client and the server
adhere to the four principles:
• Identification of resources
• Manipulation of resources through

representations
• Self-descriptive messages
• Hypermedia as the engine of application state.

API Architectural Styles

REST cache model

KIS FRI UNIZA19

REpresentational State Transfer (REST)
Layered system:
• The Layered system consists of different

hierarchical layers in which each layer
provides services only to the layer above it.

• As a result, it consumes services from the
layer below.

Code-on-demand:
• The information returned by a REST service

can include executable code (for example,
javascript) or links intended to usefully extend
client functionality.

• The constraint is optional because execution
of third-party codes introduces potential
security risks.

API Architectural Styles

REST layered system model

Introduction to REST APIs

20

KIS FRI UNIZA21

REST Web Service APIs

• A REST Web service API (REST API) is a

programming interface that

communicates over HTTP.

• REST APIs use the same concepts as
the HTTP protocol which are as follows:
• HTTP requests/responses
• HTTP verbs
• HTTP status codes
• HTTP headers/body

Introduction to REST APIs

REST API request/response model

KIS FRI UNIZA22

• REST API requests are HTTP requests that are a way for an application (client) to ask the
server to perform a function.

• REST API requests are made up of four major components:
• Uniform Resource Identifier (URI)
• HTTP Method
• Header
• Body

REST API Requests
Introduction to REST APIs

KIS FRI UNIZA23

The Uniform Resource Identifier (URI), also referred to as Uniform Resource Locator (URL),
identifies which resource the client wants to manipulate. The components of a URI are:
• Scheme: specifies which HTTP protocol should be used, http or https.
• Authority: consists of two parts, namely, host and port.
• Path: represents the location of the resource, the data or object, to be manipulated on the

server.
• Query: provides additional details for scope, filtering, or to clarify a request.

REST API Requests - URI
Introduction to REST APIs

KIS FRI UNIZA24

• REST APIs use the standard HTTP methods to communicate to the web services for which
action is being requested for the given resource.

• The suggested mapping of the HTTP Method to the action is as follows:

REST API Requests – HTTP methods
Introduction to REST APIs

HTTP Method Action Description

POST Create Create a new object or resource.

GET Read Retrieve resource details from the system.

PUT Update Replace or update an existing resource.

PATCH Partial Update Update some details from an existing resource.

DELETE Delete Remove a resource from the system.

KIS FRI UNIZA25

Header:
• HTTP headers are formatted as name-value pairs that are separated by a colon (:), [name]:[value].

Two types of headers:
• Request headers - Include additional information that does not relate to the content of the

message.

REST API Requests - Headers
Introduction to REST APIs

Key Example Value Description

Authorization Basic dmFncmFudDp2YWdyYW Provide credentials to authorize the request

• Entity headers - Additional information that describes the content of the body of the message.

Key Example Value Description

Content-Type application/ json Specify the format of the data in the body

KIS FRI UNIZA26

Body:

• The body of the REST API request contains the data pertaining to the resource that the client wants to

manipulate.

• REST API requests that use the HTTP method POST, PUT, and PATCH typically include a body.

• The body is optional depending on the HTTP method.

• If the data is provided in the body, then the data type must be specified in the header using the

Content-Type key.

REST API Requests - Body
Introduction to REST APIs

KIS FRI UNIZA27

• REST API responses are HTTP responses that communicate the results of a client's HTTP
request.

• REST API Responses are made up of three major components:

• HTTP Status

• Header

• Body

REST API Responses
Introduction to REST APIs

KIS FRI UNIZA28

HTTP Status
• The HTTP status code help the client determine the reason for the error and can sometimes provide

suggestions for fixing the problem.
• HTTP status codes consists of three digits, where the first digit is the response category, and the other

 two digits are assigned in numerical order.
• There are five different categories of HTTP status codes:
• 1xx – Informational – for informational purposes, responses do not contain a body
• 2xx – Success – the server received and accepted the request
• 3xx – Redirection – the client has an additional action to take to get the request completed
• 4xx -- Client Error – the request contains an error such as bad syntax or invalid input
• 5xx -- Server Error – unable to fulfill the valid requests.

REST API Responses – HTTP Status
Introduction to REST APIs

KIS FRI UNIZA29

REST API Responses – Common Status Codes
Introduction to REST APIs

HTTP Status
Code

Status Message Description

200 Ok Request was successfully and typically contains a payload (body)

201 Created Request was fulfilled and the requested resource was created

202 Accepted Request has been accepted for processing and is in process

400 Bad Request Request will not be processed due to an error with the request

401 Unauthorized
Request does not have valid authentication credentials to perform
the request

403 Forbidden Request was understood but has been rejected by the server

404 Not Found
Request cannot be fulfilled because the resource path of the
request was not found on the server

500 Internal Server Error Request cannot be fulfilled due to a server error

503 Service Unavailable
Request cannot be fulfilled because currently the server cannot
handle the request

KIS FRI UNIZA30

• Header - The header in the response is to provide additional information between the server and the
client in the name-value pair format that is separated by a colon (:), [name]:[value].There are two
types of headers: response headers and entity headers.
• Response headers – It contains additional information that doesn't relate to the content of the

message. The typical response headers for a REST API request include:

REST API Responses - Headers
Introduction to REST APIs

• Entity headers – They are additional information that describes the content of the body of the
message. One common entity header specifies the type of data being returned:

Key Example Value Description

Content-Type application/ json Specify the format of the data in the body

Key Example Value Description

Set-Cookie JSESSIONID=30A9DN810FQ428P;
Path=/ Used to send cookies from the server

Cache-Control Cache-Control: max-age=3600, public Specify directives which MUST be
obeyed by all caching mechanisms

KIS FRI UNIZA31

Response Pagination

• Response Pagination enables data to be broken into chunks.
• Most APIs that implement pagination use the query parameter to specify which page to return in the

response.

Compressed response data
• Compressed data reduces large amount of data that cannot be paginated
• To request a data compression, the request must add the Accept-Encoding field to the request

header. The accepted values are:
• gzip
• compress
• deflate
• br
• identity
• *

REST API Responses
Introduction to REST APIs

KIS FRI UNIZA32

Using Sequence Diagrams with REST API
• Sequence diagrams are used to explain a

sequence of exchanges or events.

• API request sequence diagram has three
separate sequences:

• Create session - the starting request is
labeled as HTTPS: Create Session
w/credentials.

• Get devices - request a list of devices from
the platform.

• Create device – begins with a POST request
to create a device.

Introduction to REST APIs

API Request/Response Sequence Diagram

Authenticating to a REST API

33

KIS FRI UNIZA34

• REST APIs require authentication so that random users cannot access, create, update, or delete
information incorrectly or maliciously.

• Some APIs that do not require authentication are read-only and they do not contain any critical or
confidential information.

REST API Authentication
Authenticating to a REST API

KIS FRI UNIZA35

Authentication Vs. Authorization
Authentication:
• Authentication proves the user’s identity.
• For example, when you go to the airport, you

have to show your government-issued
identification or use biometrics to prove that
you are the person you claim to be.

Authorization:
• Authorization defines the user access.
• It is the act where the user is proving to have

permissions to perform the requested action
on that resource.

• For example, when you go to a concert, all
you need to show is your ticket to prove that
you are allowed in.

Authenticating to a REST API

KIS FRI UNIZA36

The common types of authentication mechanisms include:

• Basic authentication: It transmits credentials as username/password pairs separated with a colon (:)
and encoded using Base64.

• Bearer authentication: It uses a bearer token, which is a string generated by an authentication server
such as an Identity Service (IdS).

• API Key: It is a unique alphanumeric string generated by the server and assigned to a user. The two
types of API keys are public and private.

Authentication mechanisms
Authenticating to a REST API

KIS FRI UNIZA37

• Open Authorization (Oauth) combines authentication with authorization.
• Oauth was developed as a solution to insecure authentication mechanisms.
• Oauth has increased security as compared to other options.
• There are two versions of Oauth - OAuth 1.0 and OAuth 2.0, where OAuth 2.0 is not backwards

compatible.
• OAuth 2.0 authorization framework enables a third-party application to obtain limited access to an

HTTP service.
• OAuth allows the user to provide credentials directly to the authorization server [Identity Provider (IdP)

or an Identity Service (IdS)], to obtain an access token to share with the application.
• The process of obtaining the token is called a flow.

Authorization Mechanisms
Authenticating to a REST API

API Rate Limits

38

KIS FRI UNIZA39

• An API rate limit is a way for a web service to control the number of requests a user or an application
can make per defined unit of time.

• Rate limiting helps to :

• avoid a server overload from too many requests at once

• provide better service and response time to all users

• protect against a Denial-of-Service (DoS) attack

What are Rate Limits?
API Rate Limits

KIS FRI UNIZA40

Rate Limit Algorithms – Leaky bucket
Leaky bucket
• This algorithm puts all incoming

requests into a request queue in
the order in which they were
received.

• The incoming requests can come
in at any rate, but the server will
process the requests from the
queue at a fixed rate.

• If the request queue is full, the
request is rejected

API Rate Limits

Visual representation of
leaky bucket algorithm

Example of leaky bucket algorithm

KIS FRI UNIZA41

Token bucket

• This algorithm gives each user a defined number of tokens they can use within a certain increment of
time.

• When the client makes a request, the server checks the bucket to make sure it contains at least one
token. If so, it removes that token and processes the request. If there isn't a token available, it rejects
the request.

• The client must calculate the number of tokens he currently has to avoid rejected requests.

Rate Limit Algorithms – Token bucket
API Rate Limits

Token Bucket Algorithm model

Example of the token bucket algorithm

KIS FRI UNIZA42

Rate Limit Algorithms – Fixed window counter
Fixed window counter

• In fixed window counter algorithm, a fixed
window of time is assigned a counter to
represent how many requests can be
processed during that period.

• When the server receives a request, the
counter for the current window of time must
be zero.

• When the request is processed, the counter
is deducted. If the limit for that window of
time is met, all subsequent requests within
that window of time will be rejected.

API Rate Limits

Fixed Window Counter Algorithm Example

KIS FRI UNIZA43

Rate Limit Algorithms – Sliding window counter
Sliding window counter

• This algorithm allows a fixed number of
requests to be made in a set duration of
time.

• When a new request is made, the server
counts how many requests have already
been made from the beginning of the
window to the current time to determine if
the request should be processed or
rejected.

• The client needs to ensure that the rate
limit does not exceed at the time of the
request.

API Rate Limits

Sliding Window Counter Algorithm Example

KIS FRI UNIZA44

• Many rate limiting APIs add details about the rate limit in the response's header.

• The commonly used Rate Limit keys include:
• X-Rate Limit-Limit - The maximum number of requests that can be made in a specified unit of

time.
• X-Rate Limit-Remaining - The number of pending requests that the requester can make in the

current rate limit window
• X-Rate Limit-Reset - The time when the rate limit window will reset.

Knowing the Rate Limit
API Rate Limits

KIS FRI UNIZA45

• When the rate limit is exceeded, the server automatically rejects the request and sends back an HTTP
response to the user.

• The response containing the ‘rate limit exceeded’ error also includes a meaningful HTTP status code.

• The most commonly used HTTP status codes are:
• 429: Too Many Requests
• 403: Forbidden

Exceeding the Rate Limit
API Rate Limits

Working with Webhooks

46

KIS FRI UNIZA47

• A Webhook is an HTTP callback, or an HTTP POST, to a specified URL that notifies the application
when a particular activity or event is occurred in the resources.

• With webhooks, applications are more efficient as polling mechanisms are not required.

• Webhooks are also known as reverse APIs, because applications subscribe to a webhook server by
registering with the webhook provider.

• Multiple applications can subscribe to a single webhook server.

Examples:

• The Cisco DNA Center platform provides webhooks that enable third-party applications to receive
network data when specified events occur.

• You can create a webhook to have Cisco Webex Teams notify you of new messages posted in a
particular room.

What is a Webhook?
Working with Webhooks

KIS FRI UNIZA48

• In order to receive a notification from a webhook provider, the application must meet certain
requirements:
• The application must be running at all times to receive HTTP POST requests.
• The application must register a URI on the webhook provider.

• Also, the application must handle the incoming notifications from the webhook server.

• Use free online tools to ensure the application is receiving notifications from a webhook.

What is a Webhook?
Working with Webhooks

Troubleshooting API Calls

49

KIS FRI UNIZA50

• There will be instances where you will make an API request but will not get the expected
response. Hence, learning to troubleshoot the most common REST API issues is important.

• Always have the API reference guide and API authentication information handy while
troubleshooting the REST API issues.

Troubleshooting REST API Requests
Troubleshooting API Calls

KIS FRI UNIZA51

• Sometimes API servers cannot be reached or fail to respond. You can identify what went wrong from
the error messages received as a result of the request.

Troubleshooting tips for client-side error:

• User error: Mistyping the URI when using the API for the first time.

No Response and HTTP Status Code from the API
server

Troubleshooting API Calls

The traceback will be as follows:

KIS FRI UNIZA52

Wrong Domain name Example – To test the wrong domain name condition, run a script which simply
makes the request to a URI that has the wrong domain name.

No Response and HTTP Status Code from the API
server

Troubleshooting API Calls

KIS FRI UNIZA53

Connectivity Issues
• Are there any Proxy, Firewall or VPN issues?
• Is there an SSL error?

Invalid Certificate Example
• This issue can only occur if the REST API URI uses a secure connection (HTTPS).
• When the scheme of the URI is HTTPS, the connection will perform an the SSL handshake between the client and

the server. If it fails, fix the invalid certificate

Traceback:

No Response and HTTP Status Code from the API
server

Troubleshooting API Calls

KIS FRI UNIZA54

• But, if you are working in a lab environment where the certificates aren't valid yet, you can turn off the
certificate verification setting.

• To turn it off for the requests library in Python, add the verify parameter to the request.

No Response and HTTP Status Code from the API
server

Troubleshooting API Calls

Resolution:
• Fix the issue by identifying the root cause.

KIS FRI UNIZA55

Troubleshooting tips for server-side error :

• API server functioning – no power, cabling issues, domain name change, network down.

• To test if the IP address is accessible, run a script which makes the request to the URL and waits
for a response.

No Response and HTTP Status Code from the API
server

Troubleshooting API Calls

• If the API server is not functioning, you will get a long silence followed by a traceback
that will be as follows:

KIS FRI UNIZA56

Is there a communication issue between the API server and the client?
• Use a network capturing tool to see if the response from the API server is lost in the communication

between the API server and the client..
• If you have access, take a look at the API server logs if the request was received.

Resolution:
• Server-side issues cannot be resolved from the API client side.
• Contact the administrator of the API server to resolve this issue.

No Response and HTTP Status Code from the API
server

Troubleshooting API Calls

KIS FRI UNIZA57

• The status code is a part of HTTP/1.1 standard (RFC 7231), where the first digit defines the class of
the response and the last two digits do not have any class or categorization role.

• The five categories of status codes are as follows:
• 1xx: Informational - Request received, continuing to process.
• 2xx: Success - The action was successfully received, understood, and accepted.
• 3xx: Redirection - Further action must be taken in order to complete the request.
• 4xx: Client Error - The request contains bad syntax or cannot be fulfilled.
• 5xx: Server Error - The server failed to fulfill an apparently valid request.

• Steps to troubleshoot errors:
• Check the return code - It can help to output the return code in the script during the development

phase.
• Check the response body - Output the response body during development
• Use status code reference – If the issues cannot be resolved by checking the return code and

response body.

Interpreting Status Codes
Troubleshooting API Calls

KIS FRI UNIZA58

• 2xx – Success: Successfully received, understood and accepted
• 4xx – Client-side error: Error is on the client side.

Troubleshooting common 4xx errors:

400 – Bad request

The request could not be understood by the server due to malformed syntax, which is mainly due to:
• Misspelling of resources
• Syntax issue in JSON object.

2xx and 4xx Status Codes
Troubleshooting API Calls

KIS FRI UNIZA59

4xx Status Codes
Troubleshooting API Calls

Example: This example returns a status code of 400.

The server side also tells you "No id field provided", because the id is mandatory for
this API request.

KIS FRI UNIZA60

401 – Unauthorized:
• This error message means the server could not authenticate the request.
• Check your credentials, including username, password, API key, token, request URI

Example

4xx Status Codes
Troubleshooting API Calls

The authentication auth=("person1","great") should be added in the code

KIS FRI UNIZA61

403 – Forbidden
• The server recognizes the authentication credentials, but the client is not authorized to perform the

request.
• Example: The status code 403 is not an authentication issue; it is just that the user does not have

enough privileges to use that particular API.

4xx Status Codes
Troubleshooting API Calls

The authentication should be modified to use person2/super instead of person1/great.

KIS FRI UNIZA62

407 - Proxy Authentication Required
• This code is similar to 401 (Unauthorized), but it indicates that the client must first authenticate

itself with the proxy.
• In this scenario, there is a proxy server between the client and the server, and the 407 response

code indicates that the client needs to authenticate with the proxy server first.

409 - The request could not be completed due to a conflict with the current state of the target
resource.

 For example, an edit conflict where a resource is being edited by multiple users would cause a
409 error.

 Retrying the request later might succeed, as long as the conflict is resolved by the server.

4xx Status Codes
Troubleshooting API Calls

KIS FRI UNIZA63

415 - Unsupported Media Type
• In this case, the client sent a request body in a format that the server does not support.
• Example: If the client sends XML to a server that only accepts JSON, the server would return a 415

error.

4xx Status Codes
Troubleshooting API Calls

Omitting the header or adding a header {"content-type":"application/ json"} will work.

KIS FRI UNIZA64

• 500 - Internal Server Error

• The server encountered an unexpected condition that prevented it from fulfilling the request.

• 501 - Not Implemented

• The server does not support the functionality required to fulfill this request

• 502 - Bad Gateway

• The server (acting as gateway or proxy) received an invalid response from an inbound server.

• 503 - Service Unavailable

• The server is currently unable to handle the request due to overload or scheduled maintenance.

• 504 - Gateway Timeout

• The server (acting as a gateway or proxy) did not receive timely response from an upstream
server.

5xx Status Codes
Troubleshooting API Calls

KIS FRI UNIZA65

• API defines the ways users, developers, and other applications can interact with an
application's components.

• An API can use common web-based interactions or communication protocols and its own
proprietary standards.

• APIs can be delivered synchronously (or) asynchronously.
• The three most popular types of API architectural styles are RPC, SOAP, and REST.
• A REST web service API (REST API) is a programming interface that communicates over

HTTP while adhering to the principles of the REST architectural style.
• Authentication is the act of verifying the user's identity. Common types of authentication

mechanisms include Basic, Bearer, and API Key.
• Authorization is the act where the user is proving to have permissions to perform the

requested action on that resource.

Module summary

KIS FRI UNIZA66

• An API Rate limit is a way for a web service to control the number of requests a user or an
application can make per defined unit of time.

• A webhook is an HTTP callback, or an HTTP POST, to a specified URL that notifies your
application in case of an activity or ‘event’ in one of your resources on the platform.

• The API reference guide and API authentication information must be handy before
troubleshooting.

• Client-side errors include user error, wrong URI, wrong domain, a connectivity issue, and
an invalid certificate.

• Server-side error includes communication problems between the server and the client.
• 4xx codes are Client-side errors and 5xx codes are Server-side errors.

Module summary

Vytvorené v rámci projektu KEGA 026TUKE-4/2021

Thank you for your attention.

The content was chapter from DevNet Associate Module
• M4 - Understanding and Using APIs

	Lecture 8 – APIs
	Outline
	Introducing APIs
	What is an API?
	Why use APIs?
	Why are APIs so popular?
	API Design Styles
	Types of Design Styles
	Synchronous APIs
	Asynchronous APIs
	API Architectural Styles
	Common Architectural Styles
	Remote Procedure Call (RPC)
	Simple Object Access Protocol (SOAP)
	Simple Object Access Protocol (SOAP) (2)
	REpresentational State Transfer (REST)
	REpresentational State Transfer (REST) (2)
	REpresentational State Transfer (REST) (3)
	REpresentational State Transfer (REST) (4)
	Introduction to REST APIs
	REST Web Service APIs
	REST API Requests
	REST API Requests - URI
	REST API Requests – HTTP methods
	REST API Requests - Headers
	REST API Requests - Body
	REST API Responses
	REST API Responses – HTTP Status
	REST API Responses – Common Status Codes
	REST API Responses - Headers
	REST API Responses (2)
	Using Sequence Diagrams with REST API
	Authenticating to a REST API
	REST API Authentication
	Authentication Vs. Authorization
	Authentication mechanisms
	Authorization Mechanisms
	API Rate Limits
	What are Rate Limits?
	Rate Limit Algorithms – Leaky bucket
	Rate Limit Algorithms – Token bucket
	Rate Limit Algorithms – Fixed window counter
	Rate Limit Algorithms – Sliding window counter
	Knowing the Rate Limit
	Exceeding the Rate Limit
	Working with Webhooks
	What is a Webhook?
	What is a Webhook? (2)
	Troubleshooting API Calls
	Troubleshooting REST API Requests
	No Response and HTTP Status Code from the API server
	No Response and HTTP Status Code from the API server (2)
	No Response and HTTP Status Code from the API server (3)
	No Response and HTTP Status Code from the API server (4)
	No Response and HTTP Status Code from the API server (5)
	No Response and HTTP Status Code from the API server (6)
	Interpreting Status Codes
	2xx and 4xx Status Codes
	4xx Status Codes
	4xx Status Codes (2)
	4xx Status Codes (3)
	4xx Status Codes (4)
	4xx Status Codes (5)
	5xx Status Codes
	Module summary
	Module summary (2)
	Thank you for your attention.

