
Vytvorené v rámci projektu KEGA 026TUKE-4/2021

• DevNet Associate M6 – Application Deployment and Security

Lecture 9 – Application Deployment

Outline

Topic Title Topic Objective

Understanding Deployment Choices with
Different Models

Explain common cloud deployment models.

Creating and Deploying a Sample Application Use container technology to deploy a simple application.

Continuous Integration/Continuous
Deployment (CI/CD)

Explain the use of Continuous Integration/Continuous Deployment (CI/CD) in application
deployment.

Networks for Application Development and
Security

Explain the network technology required for application development in a cloud environment.

Securing Applications Use common application security techniques to secure data.

Understanding Deployment Choices with
Different Models

KIS FRI UNIZA4

• Developers need to do more than deliver application code: they need to
concern themselves with how applications are deployed, secured, operated,
monitored, scaled, and maintained.

• The physical and virtual infrastructure and platforms on which applications
are being developed and deployed are quickly evolving.

• Developers are confronted with an expanding stack of platform options,
which are all hosted on infrastructures and frameworks of increasing
flexibility and complexity.

Introduction to Deployment Choices
Application Deployment and Security

KIS FRI UNIZA5

• A piece of code, before it reaches to the user, passes through a number of
environments that leads to an increase in its quality and reliability. These
environments are self-contained and mimic the ultimate environment in
which the code will live.

• Typically, large organizations use a four-tier structure:

Deployment Environments
Application Deployment and Security

Development Testing Staging Production

This environment is used
for coding. It is also used to
manage fundamental
aspects of the
infrastructure, such as
containers or cloud
networking.

This environment is used
for testing the code. It
should be structurally
similar to the final
production environment, on
a much smaller scale. It
often includes automated
testing tools as well as
integration with a version
control system.

This environment is used
for final acceptance testing
in a realistic environment.
After the code has been
tested, it moves to the
staging environment.

This environment is used
for deploying the final code
for the end user interaction.
It must be sized and
constructed to handle
expected traffic, including
surges that might come
seasonally or with a
particular event.

KIS FRI UNIZA6

Deployment Models

Bare Metal
• A bare metal deployment is essentially

deploying to an actual computer. It is
used to install a software directly on
the target computer.

• In this method, software can directly
access the operating system and the
hardware.

• It is useful for situations requiring
access to specialized hardware, or for
High Performance Computing (HPC)
applications.

• It is now used as infrastructure to host
virtualization and cloud frameworks.

Application Deployment and Security

KIS FRI UNIZA7

Deployment Models
Virtual Machines (VMs)

• Virtual machines share the
resources of the host. It is like a
computer within the computer and
has its own computing power,
network interfaces, and storage.

• Hypervisor is software that creates
and manages VMs.

• VMs run on top of a hypervisor that
provides VMs with simulated
hardware, or with controlled access
to underlying physical hardware.

Application Deployment and Security

KIS FRI UNIZA8

Deployment Models
Container-based infrastructure

• Containers were designed to provide
the same benefits as VMs, such as
workload isolation and the ability to
run multiple workloads on a single
machine but are designed to start up
quickly.

• Containers share resources of the
host including the kernel.

• A container shares the operating
system of the host machine and uses
container-specific binaries and
libraries.

Application Deployment and Security

KIS FRI UNIZA9

Serverless Computing

• Serverless computing takes advantage of a modern trend towards applications that are
built around services. Application makes a call to another program or workload to
accomplish a particular task, to create an environment where applications are made
available on an “as needed” basis.

• It works as follows:

• Step 1. The developer creates an application.
• Step 2. The developer deploys the application as a container, so that it can run

easily in any appropriate environment.
• Step 3. The developer deploys that container to a serverless computing provider.

This deployment includes a specification of how long the function should remain
inactive before it is spun down.

• Step 4. When necessary, the application calls the function.
• Step 5. The provider spins up an instance of the container, performs the needed

task, and returns the result.

Deployment Models
Application Deployment and Security

KIS FRI UNIZA10

Serverless computing takes responsibility for assigning resources away from the developer and only
incurs costs when the application runs.

Deployment Models
Application Deployment and Security

KIS FRI UNIZA11

• In the early days of computers, infrastructure was pretty straightforward. Software ran on a single
computer and networks could link multiple computers together.

• Now, infrastructure has become more complicated, with various options available for designing the
infrastructure such as different types of clouds, and what each does and does not do well.

Types of Infrastructure
Application Deployment and Security

KIS FRI UNIZA12

• On-Premises means any system that is literally within the confines of the building.
• On-Premises are the traditional data centers that house individual machines which are provisioned for

applications, rather than clouds.
• These traditional data centers with servers dedicated to individual applications, or to VMs, which

enable a single computer to act like multiple computers.
• Operating a traditional on-premises data center requires servers, storage devices, and network

equipment to be ordered, received, assembled in racks, moved to a location, cabled for power and
data. All this setup of infrastructure takes time and effort.

• Problems related to On-Premises can be solved by moving to a cloud-based solution.

On-Premises
Application Deployment and Security

KIS FRI UNIZA13

Private Cloud
• A cloud is a system that provides self-

service provisioning for compute
resources, networking, and storage.

• In a private cloud infrastructure, the
organization controls all of the resources.

• In most cases, a private cloud is located in
a data center and all resources that run on
the hardware belong to the owner
organization.

• The advantage of a private cloud is that
one has complete control over where it is
located.

• An operations team is required to manage
the cloud and keep it running.

Application Deployment and Security

KIS FRI UNIZA14

Public Cloud
• A public cloud is the same as a private

cloud, but it is managed by a public cloud
provider.

• Public cloud customers may share
resources with other organizations.
Alternatively, public cloud providers may
provide customers with dedicated
infrastructure.

• With a public cloud, the organization does
not control the resources.

• A public cloud is helpful in scaling up
virtually as long as the load requires and
then scale down when traffic is slow.

• One disadvantage of public cloud is
known as the "noisy neighbor" problem.

Application Deployment and Security

KIS FRI UNIZA15

Hybrid Cloud
• Hybrid cloud is the combination of two

different types of clouds.
• Hybrid cloud is used to bridge a private

cloud and a public cloud within a single
application.

• Hybrid cloud combines public and private
cloud to provide additional resources and
security where necessary.

• Hybrid cloud is distinguished by the use of
more than one cloud within a single
application.

• Container orchestrators have become
very popular with companies employing
hybrid-cloud deployments.

Application Deployment and Security

KIS FRI UNIZA16

Edge Cloud
• Edge cloud is gaining popularity

because of the growth of the
Internet of Things (IoT).

• Edge cloud enables resources to
be closer to where they are
needed.

• Edge cloud computing comprises
one or more central clouds that
act as a hub for the edge clouds
themselves.

• Hardware for the edge clouds is
located as close as possible to the
user.

• Edge cloud run on much smaller
hardware so they may be more
resource-constrained.

Application Deployment and Security

Creating and Deploying a Sample Application

17

KIS FRI UNIZA18

• The most popular way to containerize an application is to deploy it as a Docker container. A container
is a way of encapsulating everything you need to run your application, so that it can easily be
deployed in a variety of environments. Docker is a way of creating and running that container.

• Docker is a format that wraps a number of different technologies to create containers. These
technologies are:

• Namespaces - These isolate different parts of the running container.
• Control groups - These cgroups are a standard Linux concept that enables the system to limit the

resources, used by an application.
• Union File Systems - These UnionFS are file systems that are built layer by layer, combining

resources.
• A Docker image is a set of read-only files that have no state and contains source code, libraries, and

other dependencies needed to run an application.

• A Docker container is the run-time instance of a Docker image.

• Creating a container involves pulling an image or a template from a repository, then using it to create a
container.

What is Docker?
Creating and Deploying a Sample Application

KIS FRI UNIZA19

• Dockerfile is a simple text-file which is required to compile the code.

• It defines the steps that the docker build command takes to create an image that can be used to create
the target container.

 Steps to generate a Dockerfile that creates an Ubuntu container:

What is Dockerfile?
Creating and Deploying a Sample Application

• Create a file named
Dockerfile and save it
in the current directory.

• Run the docker build
command to build the
image using a
Dockerfile in the
current directory (.) and
give it a name
of myubuntu.

KIS FRI UNIZA20

• Enter the command docker images to see your image in the list of images on the DEVASC VM.

What is Dockerfile?
Creating and Deploying a Sample Application

• Change to the home directory and enter Is to see that it is empty and ready for use.

• Enter exit to leave the Docker container and return to your DEVASC VM main operating
system.

KIS FRI UNIZA21

• Consider the following Dockerfile that containerizes a Python app and the explanation of the
commands are as follows:
• The FROM command installs Python in the Docker image.
• The WORKDIR command tells Docker to use /home/ubuntu as the working directory.
• The COPY command tells Docker to copy the file from Dockerfile’s current directory

into /home/ubuntu.
• The RUN command allows to directly run commands on the container.
• The CMD command will start the server when the user run the actual container.
• The EXPOSE command tells Docker that the user want to expose port 8080.

Anatomy of a Dockerfile
Creating and Deploying a Sample Application

KIS FRI UNIZA22

Anatomy of a Dockerfile
• Docker takes advantage of what is stored in

cache to speed up the process.
• The docker build command is used to build

the image. In the given output, the image was
previously built.

• The Docker goes through each step in the
Dockerfile, starting with the base image,
Python. If this image does not exist on the
system, Docker pulls it from the registry. The
default registry is Docker Hub.

• Between steps such as executing a command,
Docker actually creates a new container and
builds an intermediate image, a new layer, by
saving that container.

Creating and Deploying a Sample Application

KIS FRI UNIZA23

• After building the image using dockerfile, create a new container and do some work by entering the
docker run command.

• The -d parameter is short for –detach and indicates that the image should run in the background.
• The -P parameter tells Docker to publish it on the port that was exposed.

Start a Docker Container Locally
Creating and Deploying a Sample Application

• Notice the container’s listing processes:

KIS FRI UNIZA24

• Notice that Docker has assigned the container a name as jovial_sammet. Naming is also done by with
the --name option.

Start a Docker Container Locally
Creating and Deploying a Sample Application

• Even though the container is listening on port 80, it is just an internal port. Docker has specified an
external port as 32774, which will forward to the internal port.

• This lets you run multiple containers which listen on the same port without having conflicts.
• To pull up the sample app website, use the public IP address for the host server and that port is used.

KIS FRI UNIZA25

• Docker also allows to specify a particular port to forward, so that a more predictable system can be
created.

Start a Docker Container Locally
Creating and Deploying a Sample Application

• When the container is running, logging into it activity can be executed using the exec command.

KIS FRI UNIZA26

• To stop and remove a running container, call it by its name:

Start a Docker Container Locally
Creating and Deploying a Sample Application

• Notice the running processes again and the running container has been removed.

KIS FRI UNIZA27

• To make the image available for users, store it in an image registry.
• By default, Docker uses the Docker Hub registry, but users can create their own registry too. To start

the process:
• Log in to the registry.

Save a Docker Image to a Registry
Creating and Deploying a Sample Application

KIS FRI UNIZA28

• Commit the running container with the docker commit command.

Save a Docker Image to a Registry
Creating and Deploying a Sample Application

• Use the docker tag command to give the image the tag which was committed.

• The first part, the repository, is usually the username of the account storing the image. Next is the
image name, and then finally the optional tag.

KIS FRI UNIZA29

• Now the image is ready to be pushed to the repository.

Save a Docker Image to a Registry
Creating and Deploying a Sample Application

• Notice that the new image is stored locally.

KIS FRI UNIZA30

• Orchestration tool to build whole environment from multiple docker containers
• No need to launch all docker commands all the time
• Description inside yaml file

Docker Compose
Creating and Deploying a Sample Application

version: '3.1'

services:

 wordpress:

 image: wordpress

 restart: always

 ports:

 - 8080:80

 environment:

 WORDPRESS_DB_HOST: db

 WORDPRESS_DB_USER: exampleuser

 WORDPRESS_DB_PASSWORD: examplepass

 WORDPRESS_DB_NAME: exampledb

 volumes:

 - wordpress:/var/www/html

db:

 image: mysql:5.7

 restart: always

 environment:

 MYSQL_DATABASE: exampledb

 MYSQL_USER: exampleuser

 MYSQL_PASSWORD: examplepass

 MYSQL_RANDOM_ROOT_PASSWORD: '1'

 volumes:

 - db:/var/lib/mysql

volumes:

 wordpress:

 db:

KIS FRI UNIZA31

• The development environment is meant to be convenient to the developer. It only needs to match the
production environment where it is relevant.

• A development environment can consist of any number of tools from Integrated Development
Environments (IDEs) to databases to object storage such as Eclipse to databases to object storage.
The important part here is that it has to be comfortable for the developer.

Create a Development Environment
Creating and Deploying a Sample Application

Continuous Integration/Continuous
Deployment (CI/CD)

32

KIS FRI UNIZA33

• Continuous Integration/Continuous Deployment (CI/CD) is a philosophy for software
deployment that figures prominently in the field of DevOps.

• DevOps is about communication and making certain all members of the team are working
together to ensure smooth operation.

Introduction to CI/CD
Continuous Integration/Continuous Deployment (CI/CD)

KIS FRI UNIZA34

• Continuous Integration enables the developers on the project to continually merge the changes with
the main branch of the existing application.

• The Continuous Integration process provides a number of additional benefits:
• Code compilation
• Unit test execution
• Static code analysis
• Integration testing
• Packaging and versioning
• Publishing the version package to Docker Hub or other package repositories

Continuous Integration
Continuous Integration/Continuous Deployment (CI/CD)

KIS FRI UNIZA35

Continuous Integration
Continuous Delivery

It is the process of developing in
short sprints so that the code is
always in a deployable state. It
involves the following steps:

• Step 1: Start with the version
artifact created as part of the CI
process.

• Step 2: Automatically deploy
the candidate version on
staging.

• Step 3: Run gating tests
identified by the team or
organization.

• Step 4: If all gating tests pass,
tag this build as suitable for
production.

Continuous Integration/Continuous Deployment (CI/CD)

KIS FRI UNIZA36

Continuous Deployment
• Continuous Deployment is the ultimate expression of CI/CD.
• It is a special type of Continuous Delivery in which, every version of software that is marked as ready

for production gets deployed.

Preventing impact to users

In order to avoid impacting users, or limit the impact, these deployment strategies can be used:
 Rolling upgrade: The changes are periodically rolled out in such a way that they don't impact

current users, and nobody should have to reinstall the software.
 Canary pipeline: The new version is rolled out to a subset of users. If these users experience

problems, the changes can be easily rolled back. If these users don't experience problems, the
changes are rolled out to the rest of production.

 Blue-green deployment: An entirely new environment (Blue) is created with the new code on it,
but the old environment (Green) is held in reserve.

Continuous Integration
Continuous Integration/Continuous Deployment (CI/CD)

KIS FRI UNIZA37

The benefits of using CI/CD for development include:
• Integration with agile methodologies
• Shorter Mean Time To Resolution (MTTR)
• Automated deployment
• Less disruptive feature releases
• Improved quality
• Improved time to market

CI/CD Benefits
Continuous Integration/Continuous Deployment (CI/CD)

KIS FRI UNIZA38

• Deployment pipelines are normally created with a build tool such as Jenkins. These pipelines can
handle tasks such as gathering and compiling source code, testing, and compiling artifacts such as tar
files or other packages.

Example build job for Jenkins
• The fundamental unit of Jenkins is the project, also known as the job. Jobs are created to do all sorts

of things, from retrieving code from a source code management repo to building an application using a
script or build tool, to packaging it up and running it on a server.

Example Build Job for Jenkins
Continuous Integration/Continuous Deployment (CI/CD)

KIS FRI UNIZA39

• To create a simple job that retrieves a version of the sample application from GitHub and runs the
build script, perform the steps listed below:
• Step 1: Create a New Item in the Jenkins interface by clicking the "create new jobs" link on the

welcome page.
• Step 2: Enter a name, choose Freestyle project (so that you have the most flexibility) and click OK.
• Step 3: Scroll down to Source Code Management and select Git, then enter a GitHub repository

URL for the Repository URL.
• Step 4: Scroll down to Build and click Add Build Step. Choose Execute shell.
• Step 5: In the Command box, add the command: buildscript.sh
• Step 6: On the left-hand side, click Build Now to start the job.
• Step 7: Move your mouse over the build number to get a pulldown menu that includes a link to the

Console Output.

Example Build Job for Jenkins
Continuous Integration/Continuous Deployment (CI/CD)

KIS FRI UNIZA40

To create a second job that tests the build to ensure that it is working properly, perform the following
steps:
• Step 1: Click the Jenkins link and New Item to start a new job, then create another Freestyle job

called TestAppJob.
• Step 2: This time, leave the Source Code Management as None. But there is an option to set a Build

Trigger so that this job runs right after the previous job, BuildAppJob.
• Step 3: Scroll down and once again add a Build Step of Execute shell script.
• Step 4: Add the following script as the command, using the IP address of an example Jenkins server

and check to see if a condition is returned as true.

Example Build Job for Jenkins
Continuous Integration/Continuous Deployment (CI/CD)

Networks for Application Development and
Security

41

KIS FRI UNIZA42

• Networking accounts for all but the simplest of use cases such as cloud and container deployments.
• Some of the applications which needs to be considered for cloud deployment are given below:

• Firewalls
• Load balancers
• DNS
• Reverse proxies

Introduction
Networks for Application Development and Security

KIS FRI UNIZA43

• Firewalls are a computer’s most basic defense against unauthorized access by individuals or
applications. They can take any number of forms, from a dedicated hardware device to a setting within
an individual computer’s operating system.

• At its most basic level, a firewall accepts or rejects packets based on the IP addresses and ports to
which they're addressed.

• Firewalls can be set up with specific “rules”, which are layered on top of each other.
• A firewall can allow some connections and reject others.

Firewall
Networks for Application Development and Security

KIS FRI UNIZA44

• In some cases, you might set up your systems so that logins to sensitive systems can only come
from a single machine. This is called a “jump box”.

• A jump box can be used to provide additional access while still providing an additional layer of
security. It sets up the systems so that logins can only come from a single machine and everyone
must log into that server first, then log into the target machine from there.

Jump box
Networks for Application Development and Security

KIS FRI UNIZA45

Load Balancer
• A load balancer takes requests and balances

them by spreading them out among multiple
servers.

• A load balancer parcels out requests to
different servers.

• Load balancers makes their decisions on
which servers should get a particular request
in a few different ways.

Networks for Application Development and Security

KIS FRI UNIZA46

Load Balancer
Persistent sessions - If an application requires
a persistent session, a user needs to be logged
in and the load balancer will send requests to the
server handling the session.

 Round robin - With round robin load
balancing, the server sends each request to the
next server on the list.

Networks for Application Development and Security

KIS FRI UNIZA47

Load Balancer
Least connections - The load balancer sends
request to the server that is the least busy - the
least number of active connections.

 IP Hash - With this algorithm, The load
balancer makes a decision based on a hash
(an encoded value based on the IP address of
the request).

Networks for Application Development and Security

KIS FRI UNIZA48

• Domain Name System (DNS) provides a way for the servers on the internet to translate human-
readable names into machine-routable IP addresses. These IP addresses are necessary to actually
navigate the internet.

• DNS translates hostnames into (made-up) IP addresses.

DNS
Networks for Application Development and Security

KIS FRI UNIZA49

• A reverse proxy is similar to a regular proxy, however, while a regular proxy works to make requests
from multiple computers look like they all come from the same client, a reverse proxy works to make
sure responses look like they all come from the same server.

• A reverse proxy can evaluate traffic and act accordingly. In this way, it is similar to, and can be used
as, a firewall or a load balancer.

Reverse Proxy
Networks for Application Development and Security

Securing Applications

50

KIS FRI UNIZA51

Best practices for storing encrypted data

Data breaches occur when data is stored but not protected. When it comes to protecting data at rest,
there are a few things to consider.

Encrypting data

Data encryption ensures that when an unauthorized access is gained into the system, the data is not
visible in its actual form. There are two methods for encrypting data:

Securing the Data
Securing Applications

One-way encryption Two-way encryption

One way encryption is simpler, in that you can
easily create an encrypted value without
necessarily using a specific key, but you cannot
unencrypt it.

You would use that for information you do not
need to retrieve, just need to compare, such as
passwords.

In Two-way encryption, you encrypt the data
using a key, and then you can use that key (or a
variation on it) to decrypt the data to get it back in
plaintext.

You would use this for information you would
need to access in its original form, such as
medical records or social security numbers.

KIS FRI UNIZA52

Software vulnerabilities
• Most developers are not experts in security and can accidentally code security vulnerabilities into the

application. Ensure that someone in the organization is responsible for keeping up with the latest
vulnerabilities and patching them as appropriate.

Storing too much data
• Unless the data is needed for an essential function, don't store it.
Storing data in the cloud

• Remember that when storing data in the cloud, it is stored in someone else’s computer. Make sure
that your cloud data is encrypted or otherwise protected.

Roaming devices
• Apps are increasingly on devices that even more portable than laptops, such as tablets and especially

mobile phones. They are simply easier to lose. Be sure you are not leaving your data vulnerable by
encrypting it whenever possible.

Securing the Data
Securing Applications

KIS FRI UNIZA53

Best practices for transporting data

Data is also vulnerable when it is being transmitted. The following can be used to prevent data
vulnerability problems:
• SSH - SSH provides authentication and encryption of messages between the source and target

machines, making it difficult or impossible to snoop on the users' actions.
• TLS - TLS provides message authentication and stronger ciphers than SSL.
• VPN - A VPN keeps all application-related traffic inside the network, which acts as a proxy and

encrypts all traffic to and from the user.

Securing the Data
Securing Applications

KIS FRI UNIZA54

• SQL injection is a code injection technique that is used to attack data-driven applications, in which
malicious SQL statements are inserted into an entry field for execution.

• SQL injection exploits a security vulnerability in an application's software. This attack allows attackers
to spoof identity, tamper with existing data, allow the complete disclosure of all data on the system,
destroy the data or make it otherwise unavailable, and become administrators of the database server.

SQL in Web Pages
• SQL injection is one of the most common web hacking techniques. It is the placement of malicious

code in SQL statements, via web page input.
• It occurs when a user is asked for input, like username/userid, and instead the user gives an SQL

statement that is unknowingly executed on the database.

What is SQL Injection?
Securing Applications

KIS FRI UNIZA55

• This example creates a SELECT statement by adding a variable uid to a select string. The variable is
fetched from user input using request.args("uid")

What is SQL Injection?
Securing Applications

• SQL Injection based on 1=1 is always true. Create an SQL statement to select user profile by UID,
with a given UserProfile UID.

• If there is not input validator to prevent a user from entering "wrong" input, the user can enter some
input as UID: 2019 OR 1=1

• The output SQL statement will be:

KIS FRI UNIZA56

• The SQL statement above is valid, but will return all rows from the UserProfiles table, because OR
1=1 is always TRUE.

• If the UserProfiles table contains names, emails, addresses, and passwords, the SQL statement will
be:

What is SQL Injection?
Securing Applications

• A malware creator or hacker might get access to all user profiles in database, by simply typing 2019
OR 1=1 into the input field.

KIS FRI UNIZA57

SQL Injection based on batched SQL statements
• Most databases support batched SQL statements. A batch of SQL statements is a group of two or

more SQL statements, separated by semicolons.
• The SQL statement below will return all rows from the UserProfiles table, then delete the UserImages

table.

What is SQL Injection?
Securing Applications

KIS FRI UNIZA58

SQL injection vulnerability exists because some developers do not care about data validation and
security. There are tools that can help detect flaws and analyze code.

• Open source tools: To detect a SQL injection attack easily, developers have created good detection
engines such as SQLmap or SQLninja.

• Source code analysis tools: Source code analysis tools, also known to as Static Application Security
Testing (SAST) tools, are designed to analyze source code and/or compiled versions of code to help
find security flaws such as buffer overflows, SQL Injection flaws, and others.

• Work with a database firewall: Database firewalls detect SQL injections based on the number of
invalid queries from a host, while there are OR and UNION blocks inside of request, or others.

How to Detect and Prevent SQL Injection
Securing Applications

KIS FRI UNIZA59

Use prepared statements
• Prepared statements with variable binding - also known as parameterized queries - are used by

developers for writing database queries. Parameterized queries force the developer to first define all
the SQL code, and then pass parameter to the query.

• Prepared statements ensure that an attacker is not able to change the intent of a query, even if the
SQL commands are inserted by an attacker.

How to Detect and Prevent SQL Injection
Securing Applications

KIS FRI UNIZA60

Use Stored Procedures
• Stored procedures are not always safe from SQL injection.
• The difference between prepared statements and stored procedures is that the SQL code for a stored

procedure is defined and stored in the database itself, and then called from the application.
• Both of these techniques have the same effectiveness in preventing SQL injection.

Whitelist Input Validation
• Various parts of SQL queries are not legal locations for the use of bind variables.
• In such situations, input validation or query redesign is the most appropriate defense.
• If user parameter values are used for targeting different table names and column names, then the

parameter values should be mapped to the legal/expected table or column names to ensure
unvalidated user input does not end up in the query.

How to Detect and Prevent SQL Injection
Securing Applications

KIS FRI UNIZA61

Escaping all user-supplied input
• This technique should only be used as a last resort when none of the techniques are feasible and

involves escaping user input before putting it in a query.
• The Escaping works in such a way that each DBMS supports one or more character escaping

schemes specific to certain kinds of queries.
• There are libraries and tools used for Input Escaping.
• The ESAPI libraries make it easier for programmers to retrofit security into applications and serve as a

solid foundation.

How to Detect and Prevent SQL Injection
Securing Applications

KIS FRI UNIZA62

Additional defenses

To provide defense in depth, these additional defenses can be adopted:
• Least privilege: The privileges assigned to every database account should be minimized in order to

reduce the potential damage of a successful SQL injection attack. Minimizing the privileges will
reduce the unauthorized access attempts, even when an attacker is not trying to use SQL injection as
part of their exploit.

• Multiple database users: Web applications designers should avoid using the same owner/admin
account in the web applications to connect to the database. Different DB users could be used for
different web applications.

• SQL views: SQL views is used to further increase the access detail by limiting read access to specific
fields of a table or joins of tables.

How to Detect and Prevent SQL Injection
Securing Applications

KIS FRI UNIZA63

• Cross site scripting attacks happen when user-submitted content that has not been sanitized is
displayed to other users.

• The most obvious version of this exploit is where one user submits a comment that includes a script
that performs a malicious action and anyone who views the comments page has that script executed
on their machine.

• Nowadays, the bigger problem is that the users are dealing with more than the data that is stored in
the database, or “Stored XSS Attacks.” For example, consider this page, which displays content from
a request parameter:

Cross-Site Scripting (XSS)
Securing Applications

• A hacker could trick someone into visiting the page with a link in an email that provides malicious
code in a parameter:

KIS FRI UNIZA64

• This link, which includes a url encoded version of the script, would result in an unsuspecting user
seeing a page of:

Cross-Site Scripting (XSS)
Securing Applications

• This is called a Reflected XSS Attack. To prevent a reflected XSS attack, the main strategy is to
sanitize content where possible, and if it cannot be sanitized, do not display it.

• OWASP recommends never displaying untrusted content in the following locations:

• Inside script tags

• Inside comments

• As part of attribute names

• As part of tag names

• In CSS (within style tags)

KIS FRI UNIZA65

• The content can be displayed in some locations, if it is sanitized first. These locations include:
• Content of an HTML tag
• Value of an attribute
• Variable within Javascript

• Sanitizing content can be a complicated process to get right, as there are a wide variety of options an
attacker has.

Cross-Site Scripting (XSS)
Securing Applications

KIS FRI UNIZA66

• Another type of attack that shares some aspects of XSS attacks is Cross Site Request Forgery
(CSRF), sometimes pronounced “Sea Surf.”

• In both cases, the attacker intends for the user to execute the attacker’s code, usually without even
knowing it.

• The main difference is that CSRF attacks are typically aimed not at the target site, but rather at
a different site, one into which the user has already authenticated.

• An interesting aspect of CSRF is that the attacker never actually gets the results of the attack. They
can only judge the results after the fact, and they have to be able to predict what the effects will be to
take advantage of a successful attack.

Cross-Site Request Forgery (CSRF)
Securing Applications

KIS FRI UNIZA67

• One method to prevent CSRF attacks is to include a hidden token that must accompany any requests
from the user.

Cross-Site Request Forgery (CSRF)
Securing Applications

• That CSRFToken has to accompany every request from the user for it to be considered legitimate as
it is impossible for the attacker to predict that token.

KIS FRI UNIZA68

What is OWASP?

The Open Web Application Security Project (OWASP) is focused on providing education, tools, and other
resources to help developers avoid security problems in web-based applications. Resources provided by
OWASP include:

Secure the Application
Securing Applications

Tools Code Projects Documentation Projects

• OWASP Zed Attack Proxy
(ZAP)

• Dependency Check
• OWASP DefectDojo

• OWASP ModSecurity Core
Rule Set (CRS)

• OWASP CSRFGuard

• OWASP Application Security
Verification Standard

• OWASP Top Ten
• OWASP Cheat Sheet Series

KIS FRI UNIZA69

OWASP list of attacks include:
• Injection: This includes all sorts of injection attacks that can be prevented by using parameterized

APIs, escaping user input, and by using LIMIT clauses.
• Broken Authentication: This relates to multiple problems with user credentials. These attacks can be

prevented by avoiding default passwords, using multi-factor authentication, and by using techniques
like lengthening waiting periods after failed logins.

• Sensitive Data Exposure: This refers to scenarios when attackers steal sensitive information. Such
scenarios can be prevented by storing as little personal information as possible, and by using
encryption.

• XML External Entities (XXE): These are attacks made possible an XML feature that permits
incorporating external information using entities, and can be prevented by disabling XML Entity and
DTD processing, or by using JSON format.

• Broken Access Control: This refers to the need to ensure that an application that enables users to
circumvent existing authentication requirements should not be built and can be avoided by protecting
all resources and functions on the server side.

The OWASP Top Ten
Securing Applications

KIS FRI UNIZA70

• Security Misconfiguration: This refers to the need to ensure that the system itself is properly
configured. Prevention of these types of problems requires careful, consistent hardening of systems
and applications.

• Cross-Site Scripting (XSS): This refers to the ability for an attacker to use the dynamic functions of a
site to inject malicious content into the page. These attacks can be prevented by carefully considering
where to include the untrusted content as well as sanitizing any untrusted content.

• Insecure Deserialization: This describes issues that can occur if attackers can access, and
potentially change, serialized versions of data and objects. To prevent such issues, do not accept
serialized objects from untrusted sources.

• Using Components with Known Vulnerabilities: Most of the core functions are probably been
written and included in an existing software package, and it is probably open source. Many of the
packages that are available also include publicly available exploits. To fix this, ensure that they are
using only necessary features and secure packages.

• Insufficient Logging and Monitoring: It is important to ensure that the logs are in a common format
so that they can be easily consumed by reporting tools, and that they are auditable to detect
tampering.

The OWASP Top Ten
Securing Applications

KIS FRI UNIZA71

 Simple Plaintext Passwords
• The first passwords were simple plaintext passwords that allowed multiple users using the same core

processor to have unique privacy settings.
• Plaintext is an insecure way of storing passwords. If the database was hacked, the user's passwords

would be exposed to hackers directly.

Password Hashing
• Storing passwords is risky and complex at the same time.
• A simple approach to storing passwords is to create a table in the database that maps a username

with a password.
• The security strength and resilience of this model depends on password storage format which is

cleartext.
• Storing passwords in cleartext is the equivalent of writing them down in a piece of digital paper. If an

attacker breaks into the database and steal the passwords table, the attacker could then access each
user account.

Evolution of Password Systems
Securing Applications

KIS FRI UNIZA72

Hashing
• Hashing is a more secure way to store a password in which it is transformed into data that cannot be converted

back to the original password.
• As stated by OWASP, hash functions used in cryptography have the following key properties:

• It is easy and practical to compute the hash, but difficult or impossible to re-generate the original input if only the
hash value is known.

• It's difficult to create an initial input that would match a specific desired output.

Salted password
• To guarantee the uniqueness of the passwords, increase their complexity, a salt, which is simply random data, is

added to the input of a hash function.

Evolution of Password Systems
Securing Applications

KIS FRI UNIZA73

Using cryptographic hashing for more secure password storage
• A critical property that makes hash functions suitable for password storage is that they are deterministic.
• A deterministic function is a function that, given the same input, always produces the same output. This is vital for

authentication because one needs to have the guarantee that a given password will always produce the same
hash. Otherwise, it would be impossible to consistently verify user credentials with this technique.

Adding salt to password hashing
• A salt is added to the hashing process to force hash uniqueness thereby increasing complexity without increasing

user requirements, and mitigating password attacks such as rainbow tables.
• The unique hash produced by adding the salt can protect against different attack vectors, while slowing down

dictionary and brute-force attacks.

Evolution of Password Systems
Securing Applications

KIS FRI UNIZA74

Mitigating password attacks with a salt
• To mitigate the damage that a rainbow table or a dictionary attack could do, salt the passwords.
• According to OWASP Guidelines, a salt is a fixed-length cryptographically-strong random value that is

added to the input of hash functions to create unique hashes for every input, regardless of whether the
input is unique.

• Let’s say that you have password devnet_password1 and the salt salt706173776f726473616c74a
• You can salt that password by either appending or prepending the salt to it.

Evolution of Password Systems
Securing Applications

KIS FRI UNIZA75

Additional factors for authentication

Incorporating other authentication factors confuses the hackers who may have cracked the password.
Some of these factors are as follows:

Single-factor authentication (SFA)
• Single-factor authentication is the simplest form of authentication methods, using which, a person

matches one credential to verify himself or herself online. The most popular example of this would be
a password (credential) to a username.

• SFA has its risks as Online sites can have users' passwords leaked by a hacker. A malicious user may
guess the password as they know the user personally, or as they were able to find out certain things
about the user.

• A malicious user may also crack the password by using a bot to generate the right combination of
letters/numbers to match the users' simple, secret identification method.

Evolution of Password Systems
Securing Applications

KIS FRI UNIZA76

Two-factor authentication (2FA)
• Two-factor authentication uses the same password/username combination, but with the addition of

being asked to verify the identity of the persons by using something owned by them only such as a
mobile device.

Multi-factor authentication (MFA)
• Multi-factor authentication (MFA) is a method of computer access control in which a user is only

granted access after successfully presenting several separate pieces of evidence to an authentication
mechanism.

• At least two of the mentioned categories are required for MFA: knowledge; possession, and
inherence.

• 2FA is just a type of MFA where you only need two pieces of evidence, two “factors”.

Evolution of Password Systems
Securing Applications

KIS FRI UNIZA77

The techniques for finding a password that allows entry is known as cracking the security intended by the
password. The following are some of the techniques:

Password guessing
• Password guessing is an online technique that involves attempting to authenticate a particular user to

the system.
• It may be detected by monitoring the failed login system logs.
• Account lockouts are used to prevent an attacker from being able to simply guess the correct

password by attempting a large number of potential passwords.

Dictionary attack
• A dictionary attack is based on trying all the strings in a pre-arranged listing, derived from a list of

words such as in a dictionary.
• These succeed because many people have a tendency to choose short passwords that are ordinary

words or common passwords.

Password Cracking
Securing Applications

KIS FRI UNIZA78

Pre-computed dictionary attack or rainbow table attack
• It is possible to achieve a time/space tradeoff by pre-computing a list of hashes of dictionary words,

and storing these in a database using the hash as the key.
• Pre-computed dictionary attacks are effective when a large number of passwords are to be cracked.
• Pre-computed dictionary attacks can be thwarted by the use of salt, a technique that forces the hash

dictionary to be recomputed for each password sought, making pre-computation infeasible, provided
the number of possible salt values is large enough.

Social engineering
• Social engineering for password cracking involves a person convincing or tricking another person for

providing access to the attacker.

Password Cracking
Securing Applications

KIS FRI UNIZA79

Six key principles of human influence
• Reciprocity – Our social norms mean that we tend to return a favor when asked.
• Commitment and consistency – When people commit, whether in person, in writing, or on a web

site, they are more likely to honor that commitment in order to preserve their self-image.
• Social proof – When people see someone else doing something, such as looking up, others will stop

to do the same.
• Authority – This authority principle means that attackers who seem to be authoritative or representing

an authority figure are more likely to gain access.
• Liking – Likable people are able to persuade others more effectively. People are easily persuaded by

familiar people whom they like.
• Scarcity – When people believe that something is limited in amount, people will act positively and

quickly to pick up the desired item.

Password Cracking
Securing Applications

KIS FRI UNIZA80

There are four social engineering vectors, or lines of attack, that can take advantage of these influence
principles.
• Phishing means the person is fraudulently gaining information, especially through requests for

financial information. Often the attempts look like a real web site or email, but link to a collector site
instead.

• Vishing stands for voice phishing, so it is associated with voice phone calls to gather private personal
information for financial gain.

• Smishing involves using SMS text messaging for both urgency and asking for a specific course of
action, such as clicking a fake link or sending account information.

• Impersonation involves in-person scenarios such as wearing a service provider uniform to gain inside
access to a building or system.

Password Cracking
Securing Applications

KIS FRI UNIZA81

Password strength - Password strength is the measure of a password’s efficiency to resist password
cracking attacks. The strength of a password is determined by:
• Length: This is the number of characters the password contains.
• Complexity: This means it uses a combination of letters, numbers, and symbols.
• Unpredictability: Something that can be guessed easily by an attacker.

Here, the password #W)rdPass1 has strength and it would take about 21 years to crack it.

Password strength estimate tool: https://www.passwordmonster.com/

Password Cracking
Securing Applications

KIS FRI UNIZA82

Password strength checkers and validation tools
• The password strength validation tool is built in with password system to make sure the user's

password is compatible with latest identity management guidelines.
• Password manager is the tool to ensure the strength of the password.

Best practices
• There are a few best practices to secure user login attempts. It includes notifying users of suspicious

behavior, limiting the number of password and username login attempts.

Password Cracking
Securing Applications

KIS FRI UNIZA83

NIST Digital Identity Guidelines

Here's a brief summary of the NIST 800-63B Digital Identity Guidelines:
• 8-character minimum when a human sets it and 6-character minimum when set by system/service.
• Support at least 64 characters maximum length and all ASCII characters.
• Truncation of the password shall not be performed when processed.
• Check chosen password with known password dictionaries.
• Allow at least 10 password attempts before lockout.
• No complexity requirements, password expiration period, password hints.
• No SMS for two-factor authentication, knowledge-based authentication.

Password Cracking
Securing Applications

Summary: Application Deployment and
Security

84

KIS FRI UNIZA85

Understanding Deployment Choices with Different Models
• Large organizations use a four-tier structure: development, testing, staging, and production.
• The options to deploy the software are bare metal, virtual machines, containers, and

serverless computing.
• On-premises means any system that’s within the confines of your building.
• Clouds provide self-service access to computing resources, such as VMs, containers, and

even bare metal.
• The advantage of a private cloud is that the user has complete control over where it is

located.
• A public cloud is essentially the same as a private cloud, but it is managed by a public cloud

provider.
• Hybrid cloud is used to bridge a private cloud and a public cloud within a single application.
• An edge cloud moves computing closer to where it’s needed.

Module summary

KIS FRI UNIZA86

Continuous Integration/Continuous Deployment (CI/CD)
• CI/CD is a philosophy for software deployment that figures prominently in the field of

DevOps.
• Continuous Integration all the developers on the project, continually merge your changes

with the main branch of the existing application.
• A deployment pipeline, can be created with a build tool such as Jenkins.

Networks for Application Development and Security
• The applications you need to consider when it comes to cloud deployment include:

Firewalls, Load balancers, DNS, and Reverse proxies.
• At its most basic level, a firewall accepts or rejects packets based on the IP addresses and

ports to which they're addressed.

Module summary

KIS FRI UNIZA87

Creating and Deploying a Sample Application
• A container is way of encapsulating everything needed to run the application, so that it can

easily be deployed in a variety of environments.
• Docker is a way of creating and running that container.
• The development environment is meant to be convenient to the developer; it only needs to

match the production environment
• A development environment can consist of any number of tools, from IDEs to databases to

object storage.

Securing Applications
• Securing data in two methods by encrypting data: one-way encryption, and two-way

encryption.
• SQL injection must exploit a security vulnerability in an application's software.
• A more secure way to store a password is to transform it into data that cannot be converted

back to the original password, known as hashing.
• By cryptography password are made to be secure.

Module summary

Vytvorené v rámci projektu KEGA 026TUKE-4/2021

Thank you for your attention.

The content was chapter from DevNet Associate Module
• M6 – Application Deployment and Security

	Lecture 9 – Application Deployment
	Outline
	Understanding Deployment Choices with Different Models
	Introduction to Deployment Choices
	Deployment Environments
	Deployment Models
	Deployment Models (2)
	Deployment Models (3)
	Deployment Models (4)
	Deployment Models (5)
	Types of Infrastructure
	On-Premises
	Private Cloud
	Public Cloud
	Hybrid Cloud
	Edge Cloud
	Creating and Deploying a Sample Application
	What is Docker?
	What is Dockerfile?
	What is Dockerfile? (2)
	Anatomy of a Dockerfile
	Anatomy of a Dockerfile (2)
	Start a Docker Container Locally
	Start a Docker Container Locally (2)
	Start a Docker Container Locally (3)
	Start a Docker Container Locally (4)
	Save a Docker Image to a Registry
	Save a Docker Image to a Registry (2)
	Save a Docker Image to a Registry (3)
	Docker Compose
	Create a Development Environment
	Continuous Integration/Continuous Deployment (CI/CD)
	Introduction to CI/CD
	Continuous Integration
	Continuous Integration (2)
	Continuous Integration (3)
	CI/CD Benefits
	Example Build Job for Jenkins
	Example Build Job for Jenkins (2)
	Example Build Job for Jenkins (3)
	Networks for Application Development and Security
	Introduction
	Firewall
	Jump box
	Load Balancer
	Load Balancer (2)
	Load Balancer (3)
	DNS
	Reverse Proxy
	Securing Applications
	Securing the Data
	Securing the Data (2)
	Securing the Data (3)
	What is SQL Injection?
	What is SQL Injection? (2)
	What is SQL Injection? (3)
	What is SQL Injection? (4)
	How to Detect and Prevent SQL Injection
	How to Detect and Prevent SQL Injection (2)
	How to Detect and Prevent SQL Injection (3)
	How to Detect and Prevent SQL Injection (4)
	How to Detect and Prevent SQL Injection (5)
	Cross-Site Scripting (XSS)
	Cross-Site Scripting (XSS) (2)
	Cross-Site Scripting (XSS) (3)
	Cross-Site Request Forgery (CSRF)
	Cross-Site Request Forgery (CSRF) (2)
	Secure the Application
	The OWASP Top Ten
	The OWASP Top Ten (2)
	Evolution of Password Systems
	Evolution of Password Systems (2)
	Evolution of Password Systems (3)
	Evolution of Password Systems (4)
	Evolution of Password Systems (5)
	Evolution of Password Systems (6)
	Password Cracking
	Password Cracking (2)
	Password Cracking (3)
	Password Cracking (4)
	Password Cracking (5)
	Password Cracking (6)
	Password Cracking (7)
	Summary: Application Deployment and Security
	Module summary
	Module summary (2)
	Module summary (3)
	Thank you for your attention.

