

WiFi lab časť 3 WiFi operation – riadiaca a managementová prevádzka

KIS FRI UNIZA

Vytvorené v rámci projektu KEGA 026TUKE-4/2021

Agenda

- Spustiť Oracle VM VirtualBox Manager & Kali linux appliance
- Zachytiť 802.11 asociačný proces klienta ku AP
- Odhaliť WPA2-PSK passprase (PSK) AP zariadenia

3

IS FRI UNIZA

Adresácia a skupiny

4

Skupin							WPA2 Pre-				
а	Model	Meno	S/N	Wlan MAC	Ether MAC	SSID	shared Key	NET	uplink	login	pass
1	411UAHR	Mikrotik 1	24D10199373A	00:0C:42:44:6F:8E	00:0C:42:44:6F:8D	Mikrotik-101	!234567*	192.168.101.1/24	192.168.1.101	admin	k!s143
2	411UAHR	Mikrotik 2	24D1019445AE	00:0C:42:49:1D:1A	00:0C:42:49:1D:19	Mikrotik-102	!234567*	192.168.102.1/24	192.168.1.102	admin	k!s143
3	411UAHR	Mikrotik 3	24D101944462	00:0C:42:49:1C:D6	00:0C:42:49:1C:D5	Mikrotik-103	!234567*	192.168.103.1/24	192.168.1.103	admin	k!s143
4	411UAHR	Mikrotik 4	24D1019445BE	00:0C:42:49:1D:0A	00:0C:42:49:1D:09	Mikrotik-104	!234567*	192.168.104.1/24	192.168.1.104	admin	k!s143
5	411UAHR	Mikrotik 5	24D10199371A	00:0C:42:44:6F:AE	00:0C:42:44:6F:AD	Mikrotik-105	!234567*	192.168.105.1/24	192.168.1.105	admin	k!s143
6	411UAHR	Mikrotik 6	24D1019445B4	00:0C:42:49:1D:04	00:0C:42:49:1D:03	Mikrotik-106	!234567*	192.168.106.1/24	192.168.1.106	admin	k!s143
7	411UAHR	Mikrotik 7	24D10194447C	00:0C:42:49:1C:CC	00:0C:42:49:1C:CB	Mikrotik-107	!234567*	192.168.107.1/24	192.168.1.107	admin	k!s143
8	411UAHR	Mikrotik 8	24D10199372A	00:0C:42:44:6F:9E	00:0C:42:44:6F:9D	Mikrotik-108	!234567*	192.168.108.1/24	192.168.1.108	admin	k!s143
9	411UAHR	Mikrotik 9	24D10194442A	00:0C:42:49:1C:9E	00:0C:42:49:1C:9D	Mikrotik-109	!234567*	192.168.109.1/24	192.168.1.109	admin	k!s143
10	411UAHR	Mikrotik 10	24D101993724	00:0C:42:44:6F:94	00:0C:42:44:6F:93	Mikrotik-110	!234567*	192.168.110.1/24	192.168.1.110	admin	k!s143
11	RB952Ui-5ac2nD	Mikrotik 11	CC3E0EDD4C25	2C:C8:1B:4C:F9:B6	2C:C8:1B:4C:F9:B0	Mikrotik-111	!234567*	192.168.111.1/24	192.168.1.111	admin	k!s143
12	RB952Ui-5ac2nD	Mikrotik 12	CC3E0E60402C	2C:C8:1B:4C:B0:40	2C:C8:1B:4C:B0:3A	Mikrotik-112	!234567*	192.168.112.1/24	192.168.1.112	admin	k!s143
13	RB952Ui-5ac2nD	Mikrotik 13	CC3E0E52B863	2C:C8:1B:4C:D3:E7	2C:C8:1B:4C:D3:E1	Mikrotik-113	!234567*	192.168.113.1/24	192.168.1.113	admin	k!s143
14	RB952Ui-5ac2nD	Mikrotik 14	CC3E0E83DB79	2C:C8:1B:25:F2:3A	2C:C8:1B:25:F2:34	Mikrotik-114	!234567*	192.168.114.1/24	192.168.1.114	admin	k!s143
15	RB952Ui-5ac2nD	Mikrotik 15	CC3E0EC59727	2C:C8:1B:26:04:26	2C:C8:1B:26:04:20	Mikrotik-115	!234567*	192.168.114.1/24	192.168.1.114	admin	k!s143

Prístupy

PC:

1.) Lokálny prístup alebo 2.) Remote Desktop Connection app - mstsc.exe (resp. iný program na vzdialené ovládanie počítača) login/pass: RB03-[čísloPC]\student / student

Mikrotik (v default móde):

default login/pass: admin / <blank> default net: 192.168.88.1/24, alebo 0.0.0.0/0 prístup cez program Winbox a MAC adresu

Ethernet interfaces

着 Správca zariadení	-	\times
Súbor Akcia Zobraziť Pomocník		
✓		 ^
> 🗫 Diskové jednotky		
> 🥃 Grafické adaptéry		- 1
> 🔐 Jednotky DVD-ROM a CD-ROM		- 1
> 🥅 Klávesnice		
> 🛄 Monitory		- 1
> 側 Myši a ostatné ukazovacie zariadenia		
🗸 😰 Ostatné zariadenia		
😰 PCI Serial Port		
🔉 🐗 Ovládače zvuku, videa a hier		
> 💻 Počítač		- 1
> 🛱 Porty (COM a LPT)		- 1
> 🔲 Procesory		- 1
> 📷 Radiče IDE ATA/ATAPI		- 1
> 🍇 Radiče pamäťových zariadení		- 1
🔉 🏺 Radiče Univerzálnej sériovej zbernice		
p 😋 Romote Desktop Camera devices		- 1
🗸 🚍 Sieťové adaptéry		
🚅 Intel(R) 82579LM Gigabit Network Connection		
🗇 TP-Link Wireless USB Adapter		
VirtualBox Host-Only Ethernet Adapter		
🚽 WAN Miniport (IKEv2)		

Oracle VM VirtualBox Manager & Kali linux appliance

Kali:

login/pass: kali/kali

Dôležité upozornenie: Zneužitie nástrojov, ktoré sú súčasťou Kali linuxu, je protiprávne a môže viesť ku trestnému vyšetrovaniu voči osobám, ktoré ich zneužili. Informácie v tomto učebnom materiáli a zmienené nástroje musia byť použité len na výukové účely a so zariadeniami na tento účel určenými.

Ethernet interfaces & Kali linux

KIS FRI UNIZA

802.11 framing - summary

802.11 rámec

- FC riadiace údaje na ďalšom snímku
- Trvanie čas potrebný pre prenos rámca medzi bezdrôtovými zariadeniami
- Adresa 1 MAC adresa hostu alebo AP, ktorý má rámec prijať
- Adresa 2 MAC adresa hostu alebo AP, ktorý rámec vysiela
- Adresa 3 MAC adresa rozhrania smerovača, na ktorý je pripojený AP
- SEQ číslo poradové číslo rámca v komunikácii (prebieha potvrdzovanie Ack)
- Adresa 4 používa sa len v ad-hoc móde
- Dáta dáta zo sieťovej vrstvy
- FCS kontrolný súčet (pre overenie správnosti)

FC	Duration /ID	Address 1	Address 2	Address 3	Sequence Control	Address 4	DATA	FCS	
2	2	6	6	6	2	6	0-2312	4	Bytes

802.11 rámec – Frame Control

- Protocol version číslo verzie protokolu 802.11
- Frame type kontrolný, dátový
- Subtypes napr. beacon, asociačný, autentifikačný, ...
- To AP / From AP hodnota 1 identifikuje, či rámec ide smerom k AP alebo od AP
- More fragments určuje, či je rámec fragmentovaný
- Retry niekedy je nutné preposlať rovnaký rámec ešte raz a tento bit zabezpečí, že ostatné stanice si tento rámec nepomýlia s už raz odoslaným
- Power mngmt indikuje, či sa po prenose prepne host do úsporného režimu
- Viac dát nastavené na 1, ak host ešte bude vysielať
- WEP nastavené na 1, ak je použitý WEP protokol

Protocol version	Frame type	Subtypy	To AP	From AP	More frag	Retry	Power mngmt	More data	WEP	Rsvd	
2	2	4	1	1	1	1	1	1	1	1	b

Frame Subtypes

MANAGEMENT

- Beacon
- Probe Request & Response
- Authentication
- Deauthentication
- Association Request & Response
- Reassociation Request & Response
- Disassociation
- Announcement Traffic Indication Message (ATIM)

CONTROL	DATA
 RTS CTS ACK PS-Poll CF-End & CF-End ACK 	 Data Data+CF-ACK Data+CF-Poll Data+CF-ACK+CF-Poll Null Function CF-ACK (nodata) CF-Poll (nodata) CF-ACK+CF+Poll

- Management frames are used to manage the BSS (Basic Service Sets)
 - Service Set is a group of wireless network devices which share a Service Set identifier (SSID)
- Control frames control access to the medium
- Data frames contain payloads that are the layer 3-7 information

802.11 association process

802.11 Association process

The three 802.11 connection states are:

- Not authenticated or associated
- Authenticated but not yet associated
- Authenticated and associated

Two scanning methods to determine a suitable AP to which the client may need to connect:

- Active the client transmits a probe request and listens for a probe response from an AP
- Passive the client listens on each channel for beacon frames sent periodically by an AP. Typically it takes more time to connect

Note: If WPA/WPA2 or 802.1X authentication is required on the wireless network, the mobile station will not be able to send data until dynamic keying and authentication have taken place **after** the 802.11 Association is complete.

BSSID & client MAC address

Check status and MAC address: sudo airdump-ng wlan0

Note: Basic Service Set Identifier (BSSID) means simply MAC address of Access Point (AP)

Check the wireless interface status and Linux & Windows client's MAC address:

sudo iw dev

/ireless LAN adapter Wi-Fi 2:
Connection-specific DNS Suffix :
Description
Physical Address
DHCP Enabled Yes
Autoconfiguration Enabled : Yes
Link-local IPv6 Address : fe80::38a5:7fb3:bca5:580e%2(Preferred)
IPv4 Address
Subnet Mask

Enable wireless monitor mode

- "Monitor mode" allows to set the format of captured traffic to "802.11" format plus radiotap header. It enables to capture all packets on wireless interface, which are not only directed to our device but also other frames directed to devices connected to the network
 - Highly preferred to monitor on relevant channel used by the specific AP (see previous slide)
- To kill processes associated with wireless interface: sudo airmon-ng check kill
- Enable monitor mode: sudo airmon-ng start wlan0 [channel]
- Disable monitor mode: sudo airmon-ng stop wlan0
- Check interface status and frequency: iwconfig wlan0

16

Wireshark

Welcome to Wireshark		
Capture		
using this filter: 📕 Enter a capture filter	•	All interfaces shown ~
ethO	hamman	
any Loopback: lo	L	
wlan0	manut	
bluetooth-monitor nflog	· · · · · · · · · · · · · · · · · · ·	

- 1. Run capturing on wireless interface
- 2. Connect from another (Windows) client to the AP

Wireshark: 802.11 Association process (unknown AP)

No.	Time	Source	Destination	Protocol	Length Info	ſ
	347 5.838345529	00:0c:42:44:6f:8e	ff:ff:ff:ff:ff	802.11	166 Beacon frame, SN=229, FN=0, Flags=C, BI=100, SSID=Mikrotik-101	
	359 6.145639521	00:0c:42:44:6f:8e	ff:ff:ff:ff:ff	802.11	166 Beacon frame, SN=232, FN=0, Flags=C, BI=100, SSID=Mikrotik-101	
	364 6.248154456	00:0c:42:44:6f:8e	ff:ff:ff:ff:ff	802.11	166 Beacon frame, SN=233, FN=0, Flags=C, BI=100, SSID=Mikrotik-101	
	369 6.350337044	00:0c:42:44:6f:8e	ff:ff:ff:ff:ff	802.11	166 Beacon frame, SN=234, FN=0, Flags=C, BI=100, SSID=Mikrotik-101	
	375 6.555125228	00:0c:42:44:6f:8e	ff:ff:ff:ff:ff	802.11	166 Beacon frame, SN=236, FN=0, Flags=C, BI=100, SSID=Mikrotik-101	
	380 6.657478068	00:0c:42:44:6f:8e	ff:ff:ff:ff:ff	802.11	166 Bea <u>con</u> frame, SN=237, FN=0, Flags=C, BI=100, SSID=Mikrotik-101	
	388 6.862473166	00:0c:42:44:6f:8e	ff:ff:ff:ff:ff	802.11	166 Beacon Trame, SN=239, FN=0, Flags=C, BI=100, SSID=Mikrotik-101	
	392 6.964905728	00:0c:42:44:6f:8e	ff:ff:ff:ff:ff	802.11	166 Beacon frame, SN=246, FN=0, Flags=C, BI=100, SSID=Mikrotik-101	
	395 7.067232353	00:0c:42:44:6f:8e	ff:ff:ff:ff:ff:ff	802.11	166 Beacon frame, SN=241, FN=0, Flags=C, BI=100, SSID=Mikrotik-101	
	396 7.067236307	d0:37:45:d0:9f:f1	00:0c:42:44:6f:8e	802.11	52 Authentication, SN=0, A=0, Flags=C	
	398 7.067242889	00:0c:42:44:6f:8e	d0:37:45:d0:9f:f1	802.11	52 Authentication, SN=242, FN=0, Flags=C	
	400 7.067250103	d0:37:45:d0:9f:f1	00:0c:42:44:6f:8e	802.11	113 Association Request, SN=1, FN=0, Flags=C, SSID=Mikrotik-101	
	402 7.068764969	00:0c:42:44:6f:8e	d0:37:45:d0:9f:f1	802.11	108 Association Response, SN/243, FN=0, Flags=C	ĺ

Wireshark filter:

(wlan.addr ==	00:0c:42:44:6f:8e	&& wlan.addr ==	<mark>D0:37:45:D0:9F:F1</mark>)
(wlan.addr ==	00:0c:42:44:6f:8e	&& wlan.addr ==	<mark>FF:FF:FF:FF:FF</mark>)
(wlan.addr ==	FF:FF:FF:FF:FF:F	F && wlan.addr =	= D0:37:45:D0:9F:F1)

- IEFE 902.11 Beacon frame, Flags:C Type/Subtype: Beacon frame (0x0008) Frame Control Field: 0x8000 .000 0000 0000 0000 = Duration: 0 microseconds Receiver address: ff:ff:ff:ff:ff:ff Destination address: ff:ff:ff:ff:ff:ff Transmitter address: 00:0c:42:44:6f:8e Source address: 00:0c:42:44:6f:8e BSS Id: 00:0c:42:44:6f:8e 0000 = Fragment number: 0 0000 1111 0001 = Sequence number: 241 Frame check sequence: 0xa9cab275 [unverified] [FCS Status: Unverified] IEEE 802.11 Wireless Management - Fixed parameters (12 bytes) Timestamp: 8993792388 Beacon Interval: 0.102400 [Seconds] Capabilities Information: 0x0431 - Tagged parameters (108 bytes) Tag: SSID parameter set: Hikrotik-101 > Tag: Supported Rates 1, 2, 5.5, 11, 6(B), 9, 12, 18, [Mbit/sec] > Tag: DS Parameter se; Current Channel Tag: Traffic Indication Map (TIM): DTIM 1 of 1 bitmap ▶ Tag: ERP Information Tag: RSN Information Tag: Extended Supported Rates 24, 36, 48, 54, [Mbit/sec] Tag: Vendor Specific: Routerboard.com

Wireshark: 802.11 Association process (known AP to Windows system)

lo.	Time	Source	Destination	Protocol	Lence Info
	146 3.032518702	d0:37:45:d0:9f:f1	ff:ff:ff:ff:ff	802.11	82 Probe Request, SN=54, FN=0, Flags=C, SSID=Wildcard (Broadcast)
	147 3.032522132	d0:37:45:d0:9f:f1	ff:ff:ff:ff:ff:ff	802.11	82 Probe Request, SN=55, FN=0, Flags=C, SSID=Wildcard (Broadcast)
	163 3.067383764	00:0c:42:44:6f:8e	d0:37:45:d0:9f:f1	802.11	60 Probe Response, SN=1856, FN=0, Flags=RC, BI=100, SSID=Mikrotik-101
	177 3.225358055	00:0c:42:44:6f:8e	ff:ff:ff:ff:ff:ff	802.11	160 Peacon frame, SN=1860, FN=0, Flags=C, BI=100, SSID=Mikrotik 101
	198 3.430331038	00:0c:42:44:6f:8e	ff:ff:ff:ff:ff	802.11	166 Beacon frame, SN-1005, FN-0, FlagsC, BI=100, SSID=Mikrotik-101
	201 3.532969988	00:0c:42:44:6f:8e	ff:ff:ff:ff:ff	802.11	166 Beacon frame, SN=1866, FN=0, Flags=C, BI=100, SSID=Mikrotik-101
	205 3.634970077	00:0c:42:44:6f:8e	ff:ff:ff:ff:ff	802.11	166 Beacon frame, SN=1867, FN=0, Flags=C, BI=100, SSID=Mikrotik-101
	209 3.737654968	00:0c:42:44:6f:8e	ff:ff:ff:ff:ff	802.11	166 Beacon frame, SN=1868, FN=0, Flags=C, BI=100, SSID=Mikrotik-101
	214 3.942595345	00:0c:42:44:6f:8e	ff:ff:ff:ff:ff	802.11	166 Beacon frame, SN=1870, FN=0, Flags=C, BI=100, SSID=Mikrotik-101
	220 4.044940017	00:0c:42:44:6f:8e	ff:ff:ff:ff:ff	802.11	166 Beacon frame, SN=1871, FN=0, Flags=C, BI=100, SSID=Mikrotik-101
	229 4.147705549	00:0c:42:44:6f:8e	ff:ff:ff:ff:ff	802.11	166 Beacon frame, SN=1872, FN=0, Flags=C, BI=100, SSID=Mikrotik-101
	231 4.249770346	00:0c:42:44:6f:8e	ff:ff:ff:ff:ff	802.11	166 Beacon frame, SN=1873, FN=0, Flags=C, BI=100, SSID=Mikrotik-101
	235 4.352100165	00:0c:42:44:6f:8e	ff:ff:ff:ff:ff	802.11	166 Beacon frame, SN=1874, FN=0, Flags=C, BI=100, SSID=Mikrotik-101
	239 4.454591977	00:0c:42:44:6f:8e	ff:ff:ff:ff:ff	802.11	166 Beacon frame, SN=1875, FN=0, Flags=C, BI=100, SSID=Mikrotik-101
	246 4.659218143	00:0c:42:44:6f:8e	ff:ff:ff:ff:ff	802.11	166 Beacon frame, SN=1877, FN=0, Flags=C, BI=100, SSID=Mikrotik-101
	253 4.864108349	00:0c:42:44:6f:8e	ff:ff:ff:ff:ff	802.11	166 Beacon frame, SN=1879, FN=0, Flags=C, BI=100, SSID=Mikrotik-101
	255 4.966577097	00:0c:42:44:6f:8e	ff:ff:ff:ff:ff	802.11	166 Beacon frame, SN=1880, FN=0, Flags=C, BI=100, SSID=Mikrotik-101
	261 5.171403112	00:0c:42:44:6f:8e	ff:ff:ff:ff:ff	802.11	166 Beacon frame, SN=1882, F <u>N=0, Flags</u> =C, BI=100, SSID=Mikrotik-101
	265 5.273884552	00:0c:42:44:6f:8e	ff:ff:ff:ff:ff	802.11	166 веасоп frame, SN=1883, FN=0, Flags=с, ы-100, <u>SSID-Mikrot</u> ik-101
	271 5.480698641	00:0c:42:44:6f:8e	ff:ff:ff:ff:ff	802.11	166 Beacon frame, SN=1885, FN=0, Flags=C, BI=100, SSID=Mikrotik-101
	272 5.483755659	d0:37:45:d0:9f:f1	00:0c:42:44:6f:8e	802.11	52 Authentication, SN=0, FN=0, Flags=C
	274 5.483763503	00:0c:42:44:6f:8e	d0:37:45:d0:9f:f1	802.11	52 Authentication, SN=1886, FN=0, Flags=C
	276 5.483770403	d0:37:45:d0:9f:f1	00:0c:42:44:6f:8e	802.11	13 Association Request, SN=1, FN=0, Flags=C, SSID=Mikrotik-101
	278 5.483777554	00:0c:42:44:6f:8e	d0:37:45:d0:9f:f1	802.11	108 Association Response, SN=1887, FN=0, Flags=C

Wireshark filter:

(wlan.addr ==	00:0c:42:44:6f:8e	&& wlan.addr ==	<mark>D0:37:45:D0:9F:F1</mark>)
(wlan.addr ==	00:0c:42:44:6f:8e	&& wlan.addr ==	FF:FF:FF:FF:FF)
(wlan.addr ==	FF:FF:FF:FF:FF:F	F && wlan.addr =	= <mark>D0:37:45:D0:9F:F1</mark>)

802.11 frame structure

 Radiotap & "802.11 radio information" is a record created by Wireshark to capture and present physical layer parameters. This is not part of 802.11 header

Úlohy

- Požiadajte inú skupinu aby sa vo vhodnom okamžiku pripojili na vaše AP
- Zachytiť a stručne zdokumentovať prostredníctvom programu Wireshark v Kali linuxe fázu vyhľadania AP, autentifikácie a vytvorenia asociácie
- Odpovedzte aj na nasledujúce otázky:
 - Aká je zdrojová a cieľová L2 adresa Probe request rámca?
 - Aké sú sekvenčné hodnoty pri autentifikačných rámcoch?
 - Aký typ šifrovania si klient zvolil na komunikáciu v asociačnej požiadavke?

Poznámka: príkaz sudo alebo "super user do!" umožňuje spustit program s privilégiami iného užívateľa, zvyčajne ako superuser, resp. administrátor systému.

Penetration testing: Wifite

Oracle VM VirtualBox Manager & Kali linux appliance

Kali:

login/pass: kali/kali

Dôležité upozornenie: Zneužitie nástrojov, ktoré sú súčasťou Kali linuxu, je protiprávne a môže viesť ku trestnému vyšetrovaniu voči osobám, ktoré ich zneužili. Informácie v tomto učebnom materiáli a zmienené nástroje musia byť použité len na výukové účely a so zariadeniami na tento účel určenými.

Wifite – scanning wireless networks & listening for handshake

- 1. kali> sudo wifite --kill
- 2. Select wireless network

Wifite – handshake capture and key searching

<pre>(kali@ kali)-[/usr/share/wordlists]</pre>	
<pre>> wordlists ~ Contains the rockyou wordlist /usr/share/wordlists</pre>	

Wifite uses default wordlist file: /usr/share/dict/wordlist-probable.txt

[+] select target(s) (1-13) separated by commas, dashes or all: 1
[+] (1/1) Starting attacks against 00:0C:42:44:6F:8E (Mikrotre 101)
[!] Skipping PMKID attack, missing required tools: hcxdumptool, hc.ocapngtool
[+] Mikrotik-101 (62db WPA Handshake capture: Captured handshake
[+] saving copy of handwake to hs/handshake_Mikrotik101_00-0C-42-47-6F-8E_2021-07-19T04-30-14.cap saved
[+] analysis of captured handshake file:
[+] tshark: .cap file contains a valid handshake for 00:0c:42:44:6f:8e
[1] aircrack: .cap file does not contain a valid handshake
[+] Cracking WPA Handshake: Running aircrack-ng with wordlist-probable.txt wordlist
[+] Cracking WPA Handshake: 2.79% ETA: 3m58s @ 832.1kps (current key: leftover)

[+] Cracking WPA Handshake: Running sizerack-ng with wordtist probable txt wordlist
[+] Cracking WPA Handshake: 100.00% ETA: 0s @ 818.7kps (current key: 0507197)
[!] Failed to crack handshake: wordlist-probable.txt did not contain password
[+] Finished attacking 1 target(s), exiting
[!] Note: Leaving interface in Monitor Mode:
[!] To disable Monitor Mode when finished: airmon-ng stop wlan0

height for the second sec

Úloha

- Vytvorte vlastný súbor s WPA kľúčom
- Spustiť Wifite s vlastným súborom kľúčov
- Zdokumentovať handskake CAP súbor v ./hs adresári ; Key messages 1,2,3,4.

(Použiť program Wireshark)

Zmazať vytvorené súbory

(./cracked.json a adresár ./hs s CAP súborom)

└─\$ pwd /home/kali

> —(**kali®kali**)-[**~**] \$ nano <u>mojwordlist.txt</u>

(kati kali)-[~]

\$ sudo wifite -- dict ./mojwordlist.txt

NOTE: For each PSK guess, the attacker computes the PMK and the PTK. It uses his PTK to compute a MIC for packet 2, 3 or 4 of the handshake. If the computed MIC is equal to the MIC of the original packets, the PSK guess is correct.

Ďakujem za pozornosť.

roman dot kaloc at uniza dot sk

Vytvorené v rámci projektu KEGA 026TUKE-4/2021